您的当前位置:首页正文

B-Quark Production at Hadron Colliders

2021-06-12 来源:钮旅网
3991 guA 12 1v6138039/hp-pe:hviXraSMUHEP93-08ANL-HEP-CP-93-66

B-QuarkProductionatHadronColliders

S.Riemersma

DepartmentofPhysics,SouthernMethodistUniversity,FondrenScienceBuilding,Dallas,TX75275-0175,USA

and

RuibinMeng

HighEnergyPhysicsDivision,ArgonneNationalLaboratory,

Argonne,IL60439

Abstract

Resultsforb-quarkproductionathadroncolliders,bothcurrentandpro-posed,arepresented.DistributionsinptarepresentedfortheTeVatronand

SSC.ConfirmationofagreementbetweentheO(α3

dataispresented,andthediscrepancybetweentheS)calculationsandUA1

O(α3

S)calculationsandtheCDFresultsisupdatedwiththemostrecentdata.

1

1Introduction

StudyingB-physicsathadronacceleratorsrequiresagoodunderstandingofthetotalanddifferentialcrosssectionsforb-quarkproduction.Thisknowl-¯mixing,rareBdecays,andthosetryingtoedgegivesthoseinvolvedinBB

determinetheCKManglesα,β,andγanideaofhowmanyeventstheycanexpect,giventheluminosityandthebranchingratios.ItisparticularlyimportantforthosestudyingrareBdecaysastheysetlimitsonwherewecanhopetoseenewphysics.Forthesereasonsandothers,thecomplete

3O(αS)correctionstoheavy-quarkproductionathadronacceleratorswerecalculatedin[1]and[2].Alsothreegroups[3],[4],[5]haveattemptedtocal-culateheavy-quarkproductionusingresummationtechniquesinthesmall-xkinematicregion.Thesetechniquesarenecessary√sincetheb-quarkmassmbissmallrelativetothecenter-of-massenergies

s≈mb≈pt,

b-production,oneneedstomultiplytheseresultsbyafactoroftwo.

2

Table1.CrossSectionsforProposedFixed-TargetExperiments.

Born

4317nb1240.58µb2001.6µbThesecrosssectionsweregeneratedusingprogramscreatedby[2]withthe

followinginputs:mbwaschosentobe4.75GeV/c2,themassfactorizationscaleM2waschosentobem2b,andthepartondistributionsetusedwasCTEQ1M[6].Wewouldalsoliketomentionherethatsimilarresultshavebeenobtainedearlierinin[7]usingasimilarpartondistributionsetandournumbersinTable1.aswellasinTable2.belowagreewiththeirs.FromTable√1.,weseethatthecorrectionsevenattheselowenergiesaresizeable.For

S(TeV)

17µb92µb170µb

3O(αS)

presentintheO(α3

S)correctionsareabsentintheBornapproximationcalcu-lation.Abetterindicationoftheconvergenceshouldbefoundincomparing

theO(α4S)resultswiththeO(α3

S)corrections.Wewerealsopresentedwithalistofcutsfromvariousexperimentalgroups,andwhatwassettleduponwasthefollowing:forCDF,wewereaskedforpseudorapidities|η|<1andpt>4GeV/cinthecentralregion.TheD0cutswere|η|<3.4andpt>5GeV/cinthecentralregion.IntheforwardregionattheTeVatron,therequestwasfor2.5<|η|<5.5andpt>1.5GeV/c.AttheSSC,thecentralregionwasdeterminedtobe|η|<2.5andpt>10GeV/c,andtheforwardregiongivenwas1.5<|η|<5.5andpt>1.5GeV/c.Thecalculationsaredonewithcutsinrapiditynotpseudorapidity,butthedifferenceshouldbesmall.Table3.showstheresultsforthesecuts.

Table3.CrossSectionswithCutsImplemented.CDFTeVatronSSCCentral

Forward

Forward

13µb

62µb

approximationresultsbyafairlyuniformamountacrosstheentirept-range.Figure2.showsadramaticfall-offintheforwardregionasptincreases,againwithmostofthecrosssectioninthelow-ptregion.Inthelow-ptrange,thecrosssectionisreducedbyafactorofthreetofivecomparedtothecentralregion.dependingonthecutmade.TurningtotheSSC,Figure3.showsthatbyimposingapt-cutof10GeV/c,mostofthecrosssectionislostinthecentralregion.Atlargept,wefindthatthecontributionisstillappreciable.Finally,intheforwardregion,Figure4.revealsthelarge-ptregionisagainstillsignificant,butagainthemajorityofthecrosssectioncomesfromthelow-ptregion.ThelossofcrosssectionasptincreasesisnotsodramaticasitisintheforwardregionattheTeVatron.

3Conclusions

Whatcanweconcludefromtheseresults?First,thefixed-targetresultsareprobablysolid,sincewecanseefromFigure5.theresultsfromUA1[10]

3

areingoodagreementwiththeO(αS)results,andtheenergiesforthefixed-targetexperimentsarelowerthanthatofUA1.LookingatFigure6.,we

3

comparetheO(αS)calculationsof1,2withthe1988-89and1992-93resultsofCDF[11].Someofthesedataarestillpreliminary,ofcourse,butitappearsthatthedatadonotfitthecalculation.Fromthefigurecaptionweseethatweareoffbyaaboutafactorof2.6.Butwehavesomeconsolationbecausetheshapeisapproximatelycorrect,althoughaslightlysteeperdistributionasdiscussedin[12]wouldfitbetter.Thisfactorof2.6willonlybemagnifiedwhenwelookattheresultsfortheSSC.Clearly,wehaveaproblem.

4

Whatarethepossiblesolutions?CalculatetheO(αS)correctionsandseewhatdifferencethatmakes.Thatisanenormousendeavorandwouldtakeyears.Trytomakefurtherheadwayonthesmall-xfront.Thisispossiblebutlargeuncertaintiesremain.Asanexample,oneinterestingmechanismtoaccomodatetheCDFdatashowninFigure6.istoaltertheformofthegluondistributioninthesmall-xregion[12].Butfora’ballparkestimate’thatprobablyisnottoobad,whynotdothefollowing:try

σexp=σ0e(K−1),

(3.1)

whereσ0istheBorncrosssection,Kistheappropriate’K-factor,’andσexpistheexpectedcrosssection.InthecaseoftheTeVatron,σ0=17

5

microbarnsandK=2.2.Wewouldgetσexp=56microbarns.FortheSSC,σ0=170microbarnsandK=3.2.Hereσexp=1.5millibarns.Thedistributionswouldalsohavethefactore(K−1)multiplyingthelowest-orderdistributions.Thisisofcourseratheradhoc,buttheresultslookreasonable.Moretheoreticallyvalidcalculationsarestillwelloffinthedistance,andthenumbersareneedednow.

Finally,inthecourseofmanydiscussions[13],itwasdecidedthatap-proximatecrosssectionfiguresforeachofthecolliders,currentandproposed,shouldbeprovidedsothatanestimateofB-physicseventratescouldbemade.Towardthatend,wepresentTable4.,acompilationofcrosssectionfiguresthatshouldbecorrectwithinafactoroftwo.

Table4.CrossSectionFiguresforReference.

√σ

43GeV

0.5µb

200GeV

100µb

15.4TeV

1mb

Thenumbersforthelowerenergieswerearrivedatessentiallybyrounding

3

theresultsoftheO(αS)calculation.The1.8TeVresultwasderivedinthefollowingway:wetookthefactthatthecurvethatfitsthedataofCDFis

3

2.6timestheO(αS)result.Multiplyingthe37microbarnsbythefactorof2.6,wegetaconvenientnumberof100microbarnsfortheTeVatronwithnocuts.ThenumbersfortheLHCandtheSSCwerebaseduponvariousestiamtesobtainedusingvariouspartondistributionsets.Theywerealsoagreeduponin[13]andfurtherdetaileddiscussionsabouttheuncertaintiescanbefoundin[7],[13].

Acknowledgements.TheauthorswouldliketothankJackSmithforhiscarefulreadingofthemanuscript.ThisworkwassupportedbytheLightnerSamsFoundation,Inc.andtheU.S.DepartmentofEnergy,DivisionofHighEnergyPhysics,ContractW-31-109-ENG-38.

6

References

[1]P.Nason,S.Dawson,andR.K.Ellis,Nucl.Phys.B303(1988)607;

Nucl.Phys.B327(1989)49;Nucl.Phys.B335(1990)260.[2]W.Beenakker,H.Kuijf,J.Smith,andW.L.vanNeerven,Phys.Rev.

D40(1989)54;W.Beenakker,W.L.vanNeerven,R.Meng,G.A.Schuler,andJ.Smith,Nucl.Phys.B351(1991)507.[3]J.C.CollinsandR.K.Ellis,Nucl.Phys.B360(1991)3.

[4]E.M.Levin,M.G.Ryskin,Yu.M.Shabelskii,andA.G.Shuvaev,DESY-91-054;E.M.Levin,M.G.Ryskin,andYu.M.Shabelskii,Phys.Lett.B260(1991)429.[5]S.Catani,M.Ciafaloni,andF.Hautmann,Nucl.Phys.B366(1991)

135.[6]J.Botts,J.G.Morf´ın.J.F.Owens,J.Qiu,W-K.Tung,andH.Weerts,

Phys.Lett.B304(1993)159.[7]E.BergerandR.Meng,Phys.Rev.D46(1992)169.

[8]E.Laenen,J.Smith,andW.L.vanNeerven,Nucl.Phys.B369(1992)

543.[9]J.Smith,privatecommunication.

[10]UA1Collaboration,C.Albajaretal,Phys.Lett.B256(1991)121.[11]V.Papadimitriou,privatecommunication;F.Abeetal.,Phys.Rev.

Lett.68,(1992)3403;F.Abeetal.,Phys.Rev.Lett.69,(1992)3704;F.Abeetal.,FERMILAB-PUB-93/091-E(April1993),submittedtoPhys.Rev.Lett.;F.Abeetal.,FERMILAB-PUB-93/106-E(May1993),submittedtoPhys.Rev.Lett.;F.Abeetal.,FERMILAB-PUB-93/131-E(June1993),submittedtoPhys.Rev.D;F.Abeetal.,FERMILAB-PUB-93/145-E(June1993),submittedtoPhys.Rev.Lett.[12]E.BergerandR.Meng,ProceedingsofTheFermilabMeetingDPF’92,

eds.C.H.Albright,P.H.Kasper,R.Raja,andJ.Yoh,WorldScientific,

7

(1993);E.Berger,R.Meng,andJ.-W.Qiu,ProceedingsXXVIInt.Conf.onHighEnergyPhysicsDallas,1992;E.Berger,R.Meng,andW.-K.Tung,Phys.Rev.D46(1992)1859.

[13]E.M.Levin,J.Smith,andW.-K.Tung,privatecommunication.

8

Fig.1.dσ/dptvs.ptforthekinematiccutsimposedfortheCDFcollabo-ration(solidline)andtheD0collaboration(dashedline)inthecentralregion.Fig.2.dσ/dptvs.ptforthekinematiccutsimposedintheforwardregion

attheTeVatron.Fig.3.dσ/dptvs.ptforthekinematiccutsimposedinthecentralregion

attheSSC.Fig.4.dσ/dptvs.ptforthekinematiccutsimposedintheforwardregion

attheSSC.

√min

Fig.5.σvs.ptfor

S=1.8TeVwith|y|<1.Thehighsolidcurvewas

runwithmb=4.5GeV/c2,andM=mb/2.Themiddlesolidcurvewasrunwithmb=4.75GeV/c2,andM=mb.Thelowsolidcurvewasrunwithmb=5.0GeV/c2,andM=2mb.CTEQ1Mdistributionfunctionswereused.Thedatawiththethickerrorbarsaretakenfromthe88-89andthethinerrorbarsfromthe92-93runsofCDF[11].Thedashedcurveisthemiddlesolidcurvemultipliedbyafactorof2.6.

9

因篇幅问题不能全部显示,请点此查看更多更全内容