第二十一讲 平均数问题
求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数……”。
平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数。
解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数。
一、算术平均数
例1 用4个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?
分析 求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。
解:(4+5+7+8)÷4=6(厘米)
答:这4个杯子水面平均高度是6厘米。
例2 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是
86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?
分析 解题关键是根据语文、英语两科平均分是84分求出两科的总分,又知道两科的分数差是10分,用和差问题的解法求出语文、英语各得多少分后,就可以求出其他各科成绩。
解:①英语:(84×2+10)÷2=89(分)
②语文: 89-10=79(分)
③政治:86×2-89=83(分)
④数学: 91.5×2-83=100(分)
⑤生物: 89×5-(89+79+83+100)=94(分)
答:蔡琛这次考试英语、语文、政治、数学、生物的成绩分别是89分、79分、83分、100分、94分。
二、加权平均数
例3 果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?
分析 要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数。
解:①什锦糖的总价:
4.40×2+4.20×3+7.20×5=57.4(元)
②什锦糖的总千克数: 2+3+5=10(千克)
③什锦糖的单价:57.4÷10=5.74(元)
答:混合后的什锦糖每千克5.74元。
我们把上述这种平均数问题叫做“加权平均数”.例3中的5.74元叫做4.40元、4.20元、7.20元的加权平均数.2千克、3千克、5千克这三个数很重要,对什锦糖的单价产生不同影响,有权衡轻重的作用,所以这样的数叫做“权数”。
例4 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?
分析 此题是已知两个数的加权平均数、两个数和其中一个数的权数,求另一个数的权数的问题.甲棉田平均亩产籽棉203斤比甲乙棉田平均亩产多18斤,5亩共多出90斤.乙棉田平均亩产比甲乙棉田平均亩产少15斤,乙少的部分用甲多的部分补足,也就是看90斤里面包含几个15斤,从而求出的是乙棉田的亩数,即“权数”。
解:①甲棉田5亩比甲乙平均亩产多多少斤?
(203-185)×5=90(斤)
②乙棉田有几亩?
90÷(185-170)=6(亩)
答:乙棉田有6亩。
三、连续数平均问题
我们学过的连续数有“连续自然数”、“连续奇数”、“连续偶数”.已知几个连续数的和求出这几个数,也叫平均问题。
例5 已知八个连续奇数的和是144,求这八个连续奇数。
分析 已知偶数个奇数的和是144.连续数的个数为偶数时,它的特点是首项与末项之和等于第二项与倒数第二项之和,等于第三项与倒数第三项之和……即每两个数分为一组,八个数分成4组,每一组两个数的和是144÷4=36.这样可以确定出中间的两个数,再依次求出其他各数。
解:①每组数之和:144÷4=36
②中间两个数中较大的一个:(36+2)÷2=19
③中间两个数中较小的一个:19-2=17
∴这八个连续奇数为11、13、15、17、19、21、23和25。
答:这八个连续奇数分别为:11、13、15、17、19、21、23和25。
四、调和平均数
例6 一个运动员进行爬山训练.从A地出发,上山路长11千米,每小时行4.4千米.爬到山顶后,沿原路下山,下山每小时行5.5千米.求这位运动员上山、下山的平均速度。
分析 这道题目是行程问题中关于求上、下山平均速度的问题.解题时应区分平均速度和速度的平均数这两个不同的概念.速度的平均数=(上山速度+下山速度)÷2,而平均速度=上、下山的总路程÷上、下山所用的时间和。
解:①上山时间: 11÷4.4=2.5(小时)
②下山时间:11÷5.5=2(小时)
五、基准数平均数
例7 中关村三小有15名同学参加跳绳比赛,他们每分钟跳绳的个数分别为93、94、85、92、86、88、94、91、88、89、92、86、93、90、89,求每个人平均每分钟跳绳多少个?
分析 从他们每人跳绳的个数可以看出,每人跳绳的个数很接近,所以可以选择其中一个数90做为基准数,再找出每个加数与这个基准数的差.大于基准数的差作为加数,如93=90+3,3作为加数;小于基准数的差作为减数,如 87=90-3,3作为减数.把这些差累计起来,用和数的项数乘以基准数,加上累计差,再除以和数的个数就可以算出结果。
解:①跳绳总个数。
93+94+85+92+86+88+94+91+88+89+92+86+93+90+89
=90×15+(3+4+2+4+1+2+3)-(5+4+2+2+1+4+1)
=1350+19-19
=1350(个)
②每人平均每分钟跳多少个?
1350÷15=90(个)
答:每人平均每分钟跳90个.
小结 求平均数实际上是“移多补少”。
解决这类问题有两种基本方法:可以用基本数量关系来求。总数量÷总份数=平均数。也可以找一个基准,再移多补少。也就是:基数+相差数÷份数。
解决平均数问题也可以根据平均数求部分数。关键是根据平均数先求出几个数的和,再用平均数×次数(个数)=总和。
习题六
1.某次数学考试,甲乙的成绩和是184分,乙丙的成绩和是187分,丙丁的成绩和是188分,甲比丁多1分,问甲、乙、丙、丁各多少分?
2.小英4次语文测验的平均成绩是89分,第5次测验得了94分。问她5次测验的平均成绩是多少?
3.求1962、1973、1981、1994、2005的平均数。
4.缝纫机厂第一季度平均每月生产缝纫机750台,第二季度生产的是第一季度生产的2倍多66台,下半年平均月生产1200台,求这个厂一年的平均月产量。
5.商店用30千克酥糖和20千克水果糖混合成什锦糖。每千克酥糖8元,每千克水果糖3元。每千克什锦糖应卖多少元?
6.甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?
7. 7个连续偶数的和是1988,求这7个连续偶数。
8.有甲、乙、丙3个数,甲、乙的和是90。甲、丙的和是82,乙丙的和是86。甲、乙、丙3个数的平均数是多少?
9. 6个学生的年龄正好是连续自然数,他们的年龄和与小明爸爸的年龄相同,7个人年龄一共是126岁,求这6个学生各几岁?
10.食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):
47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?
11.有5个数的平均数是20。如果把其中的一个数改成4,这时候5个数的平均数是18。求改动的数原来是多少?
12.甲地到乙地的全程是60千米。小红骑自行车从甲地到乙地每小时行15千米,从乙地到甲地每小时行10千米。求小红往返的平均速度。
第
因篇幅问题不能全部显示,请点此查看更多更全内容