您的当前位置:首页正文

数学思想方法在数学教学中的作用

2023-08-24 来源:钮旅网
数学思想方法在数学教学中的作用

作者:杨宗应

来源:《祖国·建设版》2014年第06期

数学思想方法对数学教学有着重要的促进和指导作用,它不仅是学生形成良好认知结构的纽带,还是由知识转化为能力的桥梁,是培养学生数学意识,形成优良思维素质的关键,因此我们要有加强数学思想方法教学的意识并要在数学教学过程中不断地挖掘和渗透 数学思想方法 数学教学 作用

随着各门科学抽象化、数学化水平的日益提高,数学本身由于集合论与结构思想的发展而日益走向整体化,对统一性、普遍性的数学思想方法教学,已成为历史的必然和时代的要求,成为数学教育现代化进程中一个重要课题。数学教育的现代化,并不只是要进行“现代数学的教学”而是要进行“数学的现代教学”,要把基础数学教育“建立在现代数学的思想基础上,并使用现代数学的方法和语言。在教学实践也表明:中小学数学教育的现代化,主要不是内容的现代化,而是数学思想、方法及教学手段的现代化,加强数学思想方法的教学是基础数学教育现代化的关键,特别是对能力培养这一问题的探讨与摸索,以及社会对数学价值的要求。使我们更进一步地认识到数学思想方法对数学教学的重要性。下面我就数学思想方法对数学教学的作用谈几点认识。

一、现实的需要决定数学思想方法对数学教学有着重要的作用

时代的前进依赖于科技的发展,现代科技及经济发展成熟的标志是数学化,例如市场经济中经济统计学、金融学等领域就极需要数学的支撑,在探索科技与经济发展的过程中,当然需要某些具体的数学知识,但更多的是依靠数学的思想与方法的运用,以便从数学的角度去思考周围的实际问题,建立数学模型,从而来预测发展的前景,决策下一步的行动……可以说,时代的发展越来越依赖于数学思想和方法的作用。

教育目的的需要决定数学思想方法的作用,目前,我国正处在实施素质教育,深化教育改革阶段,由于数学思想与方法的重要作用,使得数学教育在素质教育中具有特殊的地位,著名数学家波利亚曾统计,中学生毕业后,研究数学和从事数学教育的人占1%,使用数学的占27%,基本不用或很少用数学的占70%,当然,现在的情形有所改变,但是对众多学生来说,数学思想方法比形式化的数学知识更重要,因为前者更具有普遍性,社会各部门、各行业对数学知识的要求的深度与广度的差异是很大的,但对人的素质的要求是共性的,如要求走向社会的人,具备严谨的工作态度,具有善于分析情况,归纳总结,综合比较,分类评析,概括判断的工作方法,实际工作者,科研工作者,特别是决策部门工作人员更需要逻辑论证,严密推测的科学方法与工作作风,这一切都是在数学思想方法的渗透,训练中得以培养的。

创造能力的培养是素质教育的一个重要方面,波利亚的一本专门讨信论数学发现过程的著作,书名就是《数学与猜想——数学中的归纳与类比》。而类比、归纳、猜想正是几种重要的思想方法。“问题解决”自20世纪80年代美国提出后,现已被国际数学教育界普遍接受,问题解决显然与创造能力培养有着密切联系,而问题解决是指让学生去解一些不能依靠简单的模仿来解决的非常规问题,或者提供一种问题的情景,让学生自己去提出其所隐含的数学问题,然后加以解决并作出解释。而化归与转换思想方法的熟悉化原则、简单化原则、和谐化原则均可以为问题解决提供思维导向。

二、数学思想方法对数学教学起着指导作用

用数学思想可以指导基础知识教学,在基础知识教学中培养思想方法。基础知识的教学中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。如几何体体积公式的推导体系,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,这些思想方法是灵活运用的完美范例。只有通过展现体积问题解决的思路分析,并同时形成系统的、条理的体积公式的推导线索,才能把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,这对激发学生的创造思维、形成数学思想、掌握数学方法的作用是不可低估的。注重知识在教学整体结构中的内在联系,揭示思想方法在知识互相联系、互相沟通中的纽带作用。如函数、方程、不等式的关系,当函数值等于、大于或小于一常数时,分别可得方程、不等式,联想函数图象可提供方程,不等式的解的几何意义。运用化归、数形结合等思想;这三块知识可相互为用。注意总结建构数学知识体系中的教学思想方法,揭示思想方法对形成科学的系统的知识结构,把握知识的运用,深化对知识的理解等数学活动中的指导作用。提高学生解决问题的能力及观点。

用数学思想方法指导解题练习,在问题解决中运用思想方法,提高学生自觉运用数学思想方法的意识。注意分析探求解题思路时数学思想方法的运用。解题的过程就是在数学思想的指导下,合理联想提取相关知识;调用一定数学方法加工。处理题设条件及知识,逐步缩小题设与题断间的差异的过程。也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思想方法分析解决问题的过程。

调整思路,克服思维障碍时,注意数学思想方法的运用。通过认真观察以产生新的联想;分类讨论;使条件确切,结论易求;化一般为特殊,化抽象为具体,使问题简化等都值得我们一试。分析、归纳、类比等数学思维方法;数形结合、分类讨论、转化等数学思想是走出思维困境的武器与指南。用数学思想指导知识、方法的灵活运用,进行一题多解的练习;培养思维的发散性,灵活性,敏捷性;对习题灵活变通,引申推广,培养思维的深刻性、抽象性;组织引导对解法简捷性的反思评估,不断优化思维品质,培养思维的严谨性;批判性。对同一数学问题的多角度的审视引发的不同联想;是一题多解的思维本源。丰富的合理的联想;是对知识的深刻理解,及类比、转化、数形结台、函数与方程等数学思想运用的必然。数学方法、数学思想的自觉运用往往使我们运算简捷、推理机敏,是提高数学能力的必由之路。

因篇幅问题不能全部显示,请点此查看更多更全内容