绝密★启用前
2013年普通高等学校招生全国统一考试(新课标II卷)
数学(理科)
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前考生将自己的姓名\\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)
一、 选择题:本大题共10小题。每小题5分,共50分。在每个小题给出的
四个选项中,只有一项是符合题目要求的。 (1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=
( )
(A){0,1,2} (B){-1,0,1,2}
(C){-1,0,2,3} (D){0,1,2,3}
(2)设复数z满足(1-i)z=2 i,则z= ( )
(A)-1+i (B)-1-i (C)1+i (D)1-i
(3)等比数列{an}的前n项和为Sn,已知S3 = a2 +10a1 ,a5 = 9,则a1= ( )
(A)
(B)-
(C) (D)-
(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。直线l满足l ⊥m,l
⊥n,l
β,则( )
(A)α
∥β且l ∥α
(B)α
⊥β且l⊥β
(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l
(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ= (A)-4 (B)-3 (C)-2 (D)-1
(6)执行右面的程序框图,如果输入的N=10,那么输出的s= (A)1+ + +…+
(B)1+ + +…+
(C)1+ + +…+
(D)1+ + +…+
(7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为搞影面,则得到正视图可以为
(A) (B) (C) (D)
(8)设ɑ=log36,b=log510,c=log714,则 (A)c>b>a (B)b>c>a (C)a>c>b (D)a>b>c x≥1,
(9)已知a>0,x,y满足约束条件 ,x+y≤3, 若z=2x+y的最小值为1,
y≥a(x-3)则a=
{
.
(A)
(B)
(C)1
(D)2
(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是
(A)∑xα∈Rf(xα)=0
(B)函数y=f(x)的图像是中心对称图形
(C)若xα是f(x)的极小值点,则f(x)在区间(-∞,xα)单调递减 (D)若xn是f(x)的极值点,则f1(xα)=0
(11)设抛物线y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5若以MF为直
径的园过点(0,3),则C的方程为
(A)y2=4x或y2=8x (B)y2=2x或y2=8x (C)y2=4x或y2=16x (D)y2=2x或y2=16x
(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是
(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)
第Ⅱ卷
本卷包括必考题和选考题,每个试题考生都必修作答。第22题~第24题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
(13)已知正方形ABCD的边长为2,E为CD的中点,则
=_______.
(14)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=________.
(15)设θ为第二象限角,若tan(θ+)= ,则sinθ+conθ=_________.
(16)等差数列{an}的前n项和为Sn ,已知S10=0,S15 =25,则nSn 的最小值为________.
三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB。 (Ⅰ)求B; (Ⅱ)若b=2,求△ABC面积的最大值。
(18)如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=/2AB。
(Ⅰ)证明:BC1//平面A1CD1 (Ⅱ)求二面角D-A1C-E的正弦值
(19)(本小题满分12分)
经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,没1t亏损300元。根据历史资料,得到销售季度内市场需求量的频率分布直方图,如有图所示。经销商为下一个销售季度购进了130t该农产品。以x(单位:t,100≤x≤150)表示下一个销售季度内经销该农产品的利润。
(Ⅰ)将T表示为x的函数
(Ⅱ)根据直方图的需求量分组中,以各组的区间中点值代表改组的各个值
求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x
)则取x=105,且x=105的概率等于需求量落入[100,110]的T
的数学期望。
(20)(本小题满分12分)
平面直角坐标系xOy中,过椭圆M:x2/a2+y2/b2=1(a>b>0)右焦点y-为Ab的中点,且OP的斜率为1/2 (Ι)求M的方程
=0交m,f ,A,B两点,P
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形的最大值
(21)(本小题满分12分) 已知函数f(x)=ex-ln(x+m)
(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (Ⅱ)当m≤2时,证明f(x)>0
请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,做答时请写清题号。 (22)(本小题满分10分)选修4-1几何证明选讲 如图,CD为△ABC外接圆的切线,AB的延长线教直线CD 于点D,E、F分别为弦AB与弦AC上的点, 且BC-AE=DC-AF,B、E、F、C四点共圆。 (1) 证明:CA是△ABC外接圆的直径; (2) 若DB=BE=EA,求过B、E、F、C四点的圆
的面积与△ABC外接圆面积的比值。
(23)(本小题满分10分)选修4——4;坐标系与参数方程 已知动点p,Q都在曲线c
x=2cosβ
(β为参数)上,对应参数分别为β=α
y=2sinβ
与α=2πM为(①<α<2π)M为PQ的中点。 (Ⅰ)求M的轨迹的参数方程
(Ⅱ)将M到坐标原点的距离d表示为a的函数,并判断M的轨迹是否过坐标原点。
(24)(本小题满分10分)选修4——5;不等式选讲 设a,b,c均为正数,且a+b+c=Ⅱ,证明: (Ⅰ)ab+bc+ac小于等于1/3
222
(Ⅱ)a/a-b/b-c/c≥1
因篇幅问题不能全部显示,请点此查看更多更全内容