NathanGriffiths1andKuo-MingChao2
1
DepartmentofComputerScience,UniversityofWarwick,
Coventry,CV47AL,UKnathan@dcs.warwick.ac.uk
2
SchoolofMIS,CoventryUniversity,
Coventry,CV15FB,UKk.chao@coventry.ac.uk
Abstract
TheGridvisionistoallowheterogeneouscomputationalresourcestobesharedandutilisedglobally.Gridusersareabletosubmittaskstoremoteresourcesforexecution.However,theseresourcesmaybeunreliableandthereisariskthatsubmittedtasksmayfailorcostmorethanexpected.Thenotionoftrustisoftenusedinagent-basedsystemstomanagesuchrisk,andinthispaperweapplytrusttotheproblemofresourceselectioninGridcomputing.Weproposeanumberofresourceselectionalgorithmsbasedupontrust,andevaluatetheireffectivenessinasimulatedGrid.
1Introduction
Distributedcomputersystemscanbeviewedasmulti-agentsystemsinwhichindivid-ualautonomousagentscooperatetoachievetheirobjectives.Itisthroughcooperationthatsuchagentsareabletofunctioneffectively,sincetheytypicallylacktheknowl-edge,capabilitiesorresourcestoachievetheirobjectivesalone.Gridcomputingcanbeviewedasamulti-agentsystemthatallowsuserstodiscover,selectanduseremoteresources[15].Theprocessofausersubmittingatasktoaresource,andthatresourceperformingthetaskontheuser’sbehalf,canbeviewedascooperation.Bothusersandresourceshavecontrolovertheirownbehaviour,andsoareautonomousagentshavingtheirowndecisionmakingmechanisms.Bydefinition,however,autonomousagentsthatcontroltheirownbehaviouralsocontrolhowtheycooperate.Inparticu-lar,autonomousagentsdetermineforthemselveswhentoinitiatecooperation,whentoofferit,andwhentorescindcooperativecommitments.Consequently,whenagents
cooperate,anyoneofthemcanceasecooperationatanytime,(typically)causingthewholeinteractiontofail.InaGridcomputingenvironmentautonomymanifestsitselfthroughusersandresourcesbeingabletochangethenatureoftheircooperation,orevenceasingtocooperate,atanytime.Forexample,aresourcemayreducethepri-orityofauser’staskcausingittooverrun,ormayceaseprocessingoneuser’staskinfavourofanother.
Whenenteringintocooperation,agentsinamulti-agentsystemareenteringintoanuncertaininteractioninwhichthereisariskoffailureduetothedecisionsandac-tionsofothers.Tofunctioneffectivelyagentsmustmanagethisrisk,andthenotionoftrustcanusedtoprovideasuitablemechanism.Inthispaper,wedescribehowtheconceptoftrustcanbeusedtomanagecooperativeinteractions,inthecontextofGridcomputing.Inparticular,weprovideamechanismforuseragentstousetrustforresourceselection,i.e.tochoosethemostappropriateresourceforatask.AlthoughseveralresearchershaveconsideredtheproblemofresourceselectioninaGriden-vironmentfromtheperspectiveofminimisingcost[3,16],relativelyfewhavebeenconcernedwithminimisingtaskfailure[1,2].Thosethatdoconsiderfailuretendtouserestrictivetrustmodels,andoftendonotconsiderthecostoftaskexecution1.
Inthefollowingsection,weintroducetheGridcontextinmoredetailandillustratetheproblemsthattrustcanaddress.InSection3wedescribethenotionoftrust,andthetrustmodelthatweuse,andinSection4wedescribehowtrustcanbecomparedusingastrict,stratified,orwindowedapproach.TheapplicationoftrusttotheresourceselectionproblemisdescribedinSection5.OurapproachhasbeenimplementedinasimulatedGridasdescribedinSection6,andinSection7wegivedetailsofourresults.Finally,inSection8wegiveourconclusionsandoutlineongoingwork.
2Context:GridComputing
Gridcomputingprovidesamechanismforuserstodiscover,selectandutiliseremoteresources.AlthoughmostexistingGridsarefairlylocalised,theGridvisionistoallowresourcesharingonaglobalscale,whereresourceschargeusersforexecutingtheirtasks.Resourcesareheterogeneous,geographicallydistributedandlocallycontrolled,andhavespecificindividualcapabilitiesintermsoftheirprocessorarchitecture,net-workbandwidthetc.thataremadeavailableforanassociatedcost.Gridresourcesmaybeunreliableandmayerroneouslyfailtoexecuteatask,orcircumstancesmaycausethemtodelayordropexecutionofaremoteuser’stask.Anexampleoftheformeriswherehardwareornetworkproblemscauseatasktofail.Thelattercaseisillustratedbyaresourcedroppingatasksubmittedbyoneuser,infavourofthatsubmittedbyanotheruserwhoisconsideredtobeofhigherpriority.Forexample,remoteusers’tasksmaybedroppedinfavouroflocalusers,ortaskssubmittedbylowpayingusersmaybedroppedinfavourofauserthatpaysahigherrate.
Whendeterminingwhichresourcetosubmitataskto,aGriduserwilltypicallytrytominimisethecostofexecutingthetask(possiblyconsideringtimeinadditiontofinancialcost)andtominimisetheriskofthetaskfailing.Theseaimsmayconflict
ResourceMachinePEPEPEPEresultstask submitUser agentResource modelUserFigure1:Asingleuser’sperspectiveoftheGridasamulti-agentsystem.witheachother,sincecheapresourcesmaybeunreliableandreliableresourcesmaybeexpensive.Therefore,ausermustbalancethesecriteriaaccordingtotheirownprefer-ences.Additionally,usersshouldgenerallyaimtouseabroadselectionofresources,toavoidrelianceonanarrowsetofresources.Ifauserinteractsonlywithasmallsetofresourcesthatsubsequentlybecomeunreliable,thatuserwillnothavealterna-tivefamiliarresourcestosubmittasksto,butmustsearchforalternativesandrebuildresourcefamiliarity.
Thefactorsthatauserconsiderswhenselectingaresourcedependbothonitsin-dividualdecisionmakingmechanism,andonthenatureofitsindividualGridcontext.Thecontextisimportantsinceitdetermines,amongotherthings,thesignificanceoffailureintermsofcost.Inthispaper,weassumethatallofauserstasksmustbecom-pletedandfailurehasanassociatedcostpenalty.Thus,ifaresourcefailstocompleteatasktheuserincursacostpenalty(i.e.afine)andmustfindanalternativeresourcetosubmitthetaskto.Theoverallcostofprocessingataskisthereforerelatedtotheriskoffailure,sinceinadditiontothefundamentalexecutioncosttheremaybepenaltiesforsubmittingtaskstounreliableresources.
TheGridenvironmentisillustratedinFigure1,whereresources(whichcompriseasetofmachinesthatinturncompriseasetofprocessingelements)areshownasresourceagentsandhumanusersarerepresentedbyuseragents.Userssubmittaskstoresourcesviatheircorrespondinguseragents.Allofauser’sinteractionswithre-sourcesareperformedviaitsuseragentwhichassistsinmanagingtheseinteractions.Inparticular,theresponsibilityofselectinganappropriateresourceforataskisde-volvedtotheuseragent,whichisconfiguredtoreflecttheuser’spreferences(e.g.inbalancingcostandrisk).Ourfocusinthispaperisprimarilyconcernedwiththeuseoftrustinresourceselectionand,althoughcostisclearlyrelevant,wearenotconcernedwiththedetailsofspecificeconomicmodelsofGridcomputing.Therefore,weadoptasimpleflatcommoditymarketmodelinwhichresourcesspecifytheirservicepriceandchargeusersaccordingtohowmuchresourceisconsumed[3].
3Trust
Thenotionoftrustisrecognisedasameansofassessingthepotentialriskininter-actions[5,7,12].Trustrepresentsanagent’sestimateofhowlikelyanotheragentistofulfilitscooperativecommitments.Whenconsideringuncertaininteractions,anagentcanuseitstrustofpotentialcooperativepartnerstoevaluatetheriskoffailure.Therearetwomaincategoriesoftrust:experience-basedandrecommendation-based.
3
Intheformer,anagent’sassessmentoftrustispurelybasedonitsownexperiences,whileinthelattertrustisbasedoninformationprovidedbyotheragents(possiblysup-plementedbyindividualexperience).Experience-basedtrustfitsnaturallyintheGridcontext.Usersinteractwithresourcesandinfertrustbasedontheirexperiencesand,overtime,improvetheirtrustmodels.Recommendation-basedtrustrequiresuserstoshareinformationabouttheirexperienceswitharesourcewithotherpotentialusersoftheresource.Althoughthisisapotentiallyusefulmechanism,thereareanumberofobstaclestoitsuseforaGriddomain.Inparticular,thereisnointrinsicmotivationforinformationsharing.Indeed,ifausergivespositivefeedbackaboutaresourcethismayjeopardiseanyabilityforitsfutureusesinceothersaremorelikelytousetheresource(reducingitsavailability).Therearealsogeneralissuestoaddressregardingrecommendation-basedtrustconcerningthesubjectivityandcontext-specificnatureoffeedback.Otherresearchersare,however,consideringtheseproblemstoallowutilisa-tionofrecommendation-basedtrustintheGriddomain[9,14].Ourworkisorthogonaltothis,andweenvisageexperience-basedandrecommendation-basedtrustbeingcom-binedinthefuturetoprovideasingletrustmechanism.Forthepurposesofthispaper,however,wearesolelyconcernedwithexperience-basedtrust.
3.1TrustFramework
WebaseourmodeloftrustonGambetta’stheoreticalwork[7],Marsh’sformalism[12],andtheworkofGriffiths[6,8],anddefinethetrustTinanagentα,tobearealnumberintheintervalbetween0and1:Tα∈[0,1].Thenumbersmerelyrepresentcompara-tivevalues,andhavenostrongsemanticmeaninginthemselves.Valuesapproaching0representcompletedistrust,andthoseapproaching1representcompleteblindtrust.Thereisaninverserelationshipbetweentrustandtheperceivedriskofaninteraction:cooperatingwithatrustedagenthasalowperceivedriskoffailure,whilethereisahighriskassociatedwithdistrustedagents.Trustvaluesrepresenttheviewofanin-dividualagent,subjectivelybasedonitsexperience,andarenotdirectlycomparableacrossagents.
Trustvaluesareassociatedwithameasureofconfidence,andasanagentgainsexperienceitsconfidenceincreases.Withnopriorexperience,trusttakesaninitialvalueaccordingtoanagent’sdisposition:optimisticorpessimistic.Optimisticagentsascribeahighinitialtrustvaluetoothers(implyingalowperceivedrisk),andpes-simistsascribelowvalues.Thisdispositionalsodetermineshowtrustisupdatedafterinteractions[13].Aftersuccessfulinteractions,optimistsincreasetheirtrustmorethanpessimistsand,conversely,afterunsuccessfulinteractionspessimistsdecreasetheirtrustmorethanoptimists.Anagent’sdispositioncomprises:theinitialtrust,Tinitial,ascribedpriortointeractingandfunctionsforupdatingtrustaftersuccessfulandun-successfulinteractions,updatesuccess,andupdatefailrespectively.Thesefunctionsforupdatingtrustaresimpleheuristics,andthereisnostandarddefinitionforthem.In-stead,itistheresponsibilityofthesystemdesignertochooseanappropriateheuristic.Inthispaperweusethefollowingdefinitionsfortheupdatefunctions:
updatesuccess(T)=T+((1−T)×(ds×T))updatefail(T)=T−((1−T)×(df×T))
4
wheredsanddfareweightingfactorsdefinedbythedisposition2.
Overtimetrustvaluesmaybecomeinaccurateandoutdatediftheexperiencesthatgaverisetothemarenolongerrelevant.Theenvironmentmaychange,andaresourcethatwasreliablepreviouslymaynolongerbeso.Toaddressthisproblem,weapplyadecayfunctiontoconvergeeachtrustvaluetoTinitialinthelackofanysubsequentexperience.Thus,unlessreinforcedbyrecentcooperativeactivity,thepositiveeffectofsuccessfulinteractionsreducesovertime,asdoesthenegativeeffectoffailedinter-actions.Thedecayfunctionisdefinedas:
decay(T)=T−((T−Tinitial)/dd)
whereddadecayratedefinedbytheagent’sdisposition.
Toimproveitstrustmodelsanagentmayalsoexplorealternativeresourcesforlowprioritytasks.Agentstypicallyonlyinteractwithothersthatareconsideredtrustwor-thy.Thus,theretendstobeasubsetofresourcesthatareinteractedwith,anditisthissubsetforwhomtheagentwillbeconfidentaboutitstrustvalues.Toreducetheriskofareliableagentbeingoutsidethissubset,agentscanperiodicallyselectresourcesfromoutsidethesettoverifyitsjudgementiscorrectandattempttodiscoveradditionaltrustedresources3.
4Numerical,StratifiedandWindowedTrust
Inourapproachtrustismodelledasanumericalvalue,howeversomeresearchersnotethatusingcontinuousnumericalvaluescanintroduceambiguitysincethesemanticsarehardtorepresent[1,12].Thealternativeapproachistodividethetrustcontinuumintoasetoflabelledstrata.Abdul-RahmanandHailes,forexample,takethisapproach,providingfourdistincttruststrata(“verytrustworthy”,“trustworthy”,“untrustworthy”,and“veryuntrustworthy”)thattheyargueprovidesaclearsemanticsfordifferenttrustvalues[1].Theadvantageofthisapproachisthat“trustworthy”foroneagentshouldcorrespondto“trustworthy”foranother,avoidingtheproblemofdefiningthemean-ingofanumericalvalue.However,thesesemanticsarestillsubjective,anddifferentagentsmayascribethesameexperiencestodifferentstrata;experiencesthatrateashighlytrustworthyforoneagentmayonlyrateastrustworthyforanother.Afurtherproblemwithstratifyingtrustisalossofsensitivityandaccuracy,sincecomparisonsbecomecoarsegrainedwithnowaytodistinguishbetweenagentswithinastratum.ForthisreasonMarshrejectstheuseofstratainfavourofnumericalvalues[12].Inourapproach,toavoidlossofsensitivityandaccuracy,wealsorepresenttrustbynu-mericalvalues.Furthermore,updatingtrustafterinteractionsissimplefornumericvalues,whilstthosemodelsthatusestratificationglossoverhowagentsdetermineatruststratafromtheirexperiences[1,2].
Theadvantageoftruststrataisthatselectionbetweenresourcesissimplified.Inourmodel,supposethatausermustselectbetweentworesourceswithtrustvalues0.5
and0.50001.Theusermusteitherconcludethatthisdifferenceisinsignificantandtheresourcesareequallytrusted,orthatthereisarealdifferenceintrustandthelatterresourceismoretrustworthy.Theuseofstrataavoidsthisproblem,sincetherearenonumericalvaluesforconsideration.Ideally,atrustmodelwouldhavethesensitivityandaccuracyofanumericalapproach,combinedwiththeeaseofcomparisonfromastratifiedapproach.Tothisend,weproposetwosimplemodificationstoourtrustmodelatthetimeoftrustcomparisons:variablystratifiedandwindowedtrust.
Intheformer,trustvaluesaretranslatedintostrataimmediatelybeforecomparison.Thenumberofstrataisvariable,withfewerstrataprovidingthesimplestbutleastprecisecomparison,whilemorestratareducesthecomparisonadvantagebutretainsprecision.Forexample,Abdul-RahmanandHailes’stratacanbemodelledbydividingthetrustintervalintothefollowingequalparts,
verytrustworthy:0.75<=trust<=1trustworthy:0.5<=trust<0.75untrustworthy:0.25<=trust<0.5veryuntrustworthy:0<=trust<0.25.Thedisadvantageofstratifyingtrustisthatanequaldifferenceinvaluesisnotsignificantwithinastratum,butiswhenitliesacrossstrata.Forexample,usingtheabovestrataadifferenceof0.1isnotsignificantforagentswithtrustvalues0.6and0.7(i.e.bothare“trustworthy”),butitisforagentswithvaluesof0.7and0.8(i.e.theformeris“trustworthy”andthelatter“verytrustworthy”).
Oursecondmodificationistouseavariablesizewindowwhenconsideringtrustvalues,suchthatvalueswithinthewindowareconsideredequal.Thisisasimilartostratifiedtrust,butavoidstheproblemsacrossstrataboundaries.Windowedtrustcanbethoughtofasstratifiedtrustwithmovableboundaries.Forexample,ifweuseawindowsize,ortrustdistance,of0.1,thenagentswithtrustvalues0.6and0.7areconsideredequal,asareagentswithtrustvaluesof0.7and0.8.However,theagentwillstilldistinguishbetweentrustvaluesof0.6and0.8.Thetrustdistanceisvariable,andsimilarlytostratifiedtrust,alargerdistanceprovidesthesimplestbutleastprecisecomparison,whilesmallervaluesreducethecomparisonadvantagesbutretainprecision.
5ResourceSelection
Whenselectingaresourceausermustfirstconsiderwhethertheresourcehasthere-quiredcapabilities(e.g.processorarchitecture,networkbandwidthetc.),andsecondwhetheritislikelytocompletethetasksuccessfully.Thefirstoftheseconsiderationsissimple—eitheraresourcehastherequiredcapabilitiesoritdoesnot.Thosethatdonotcanberejected,otherwisefactorssuchascostandreliabilitymustbeconsidered.Thesefactorsaremorecomplex,sincetheyhavevaryingdegreesandmaybebasedonuncertaininformation.Trustenablesanagenttoconsiderthesefactors.Auserislikelytopreferaresourcethatgenerallycompletestasksontimeandrarelyfails,toonethatfrequentlyfails.Thisisembodiedbythetrustascribedtoaresource.Toselectaresourceanagentshouldbalancetrustworthinessagainstcost.Selectingaresource
6
inthismannerisaheuristicdecisionandthereareseveralpossibleapproaches.Thispaperproposessixfundamentaloptions,asintroducedbelow.
5.1Cost
Thesimplestapproachtominimisingexecutioncostistoselecttheresourcethathasthelowestexpectedcost,basedonitspublishedcost-per-second.However,thiswillonlybesuccessfulifresourcesarehonestandreliable.Ifaresourcetakeslongerthanexpectedtoprocessthetask,orfailstoexecuteit,thenthisapproachwillnotresultinthelowestoverallcost.Ifexecutiontakeslongerthanexpectedthentheuserwillbechargedfortheadditionalprocessingtime.Shouldtaskexecutionfailthenanal-ternativeresourcemustbefound,andtheuserwillbechargedapenaltyforfailure.Theproblemisthattheriskofresourcefailureandunreliabilityisnotconsideredwhenselectingaresource.
5.2StrictTrust
Tominimisetheriskoffailure,anagentcanselectthemosttrustedcapableresource(providedtheagentisconfidentofitsmodels4).Ifseveralresourcesareequallyhighlytrusted,thenoneisselectedarbitrarily.Forlowprioritytaskstheagentperiodicallyse-lectsaresourcethatisnottrusted,bywayofexplorationasdescribedinSection3.Thisapproachensuresthattheresourcethatisperceivedtobethelowestriskisselected.However,theuserisforcedtodistinguishbetweenresourceswherethereisonlyasmallnumericaldifferenceintrust.Sincetrustissolelybasedonexperience,smalldifferencesinthenumericalvaluemaynotbesufficienttomakemeaningfuljudge-ments.Althoughsmalldifferencesmayarisefromgenuinedifferencesinreliability,theymayalsoarisefromslightdifferencesintheextentorrecencyofpriorexperience.Thus,thereisariskofoverfittingbydrawingconclusionsfromtrustvalueswheredifferencesarisefromirrelevantartifactsofthedata.
Afurtherdisadvantagetousingstricttrustisthatittendstoleadtoaverynarrowsetofresourcesbeingused.Sinceusersmayselectresourcesbasedonsmallnumericaldifferences,thesesmalldifferencesarereinforcedbytheresultinginteractions.Overtime,aninsignificantdifferenceintrustcanbemagnifiedsignificantly.Forexample,ifresourceR1istrustedonlyslightlymorethanR2thenafteraperiodofsuccessfulinteractionsthetrustofR1maybesignificantlymorethanR2.Thus,infutureinterac-tionsR1islikelytoremainmoretrustedthatR2evenifinrealitythereisnosignificantdifference.Thisisproblematicsince,asdescribedinSection2,abroadselectionofresourceshouldbeusedtoensureresilience.
5.3StratifiedTrust
Toavoidthenarrowresourceusagethatresultsfromstricttrustwecanusestratifiedtrustatthecomparisonstage.Theresourcethatismosttrustedaccordingtothetrust
stratumthatthenumericalvalueliesinisselected.Whereseveralresourcesareequallymosttrusted,oneisselectedarbitrarily.Again,wherethetaskisoflowprioritytheagentperiodicallyselectsaresourcethatisnottrustedbywayofexploration.Thisapproachavoidstheproblemofoverfittingsmallnumericaldifferences,butatthecostofalossofprecision.Thenumberofstrataisvariable,andtheeffectofstratasizeisdiscussedinSection7.
5.4StratifiedTrustwithCost
Usingstratifiedtrustforresourceselectionminimisestheriskoffailure,andavoidsoverfitting,howevernoconsiderationisgiventothecostoftaskexecution.Therefore,weproposeafourthselectionmethodthatinitiallyusesstratifiedtrustasdescribedabove,butthenselectsthecheapestofthemosttrustedresources,basedontheirad-vertisedcost-per-second.Thus,anagentfirstdeterminesthecapableresources,thenextractsthemosttrustedofthese,andfinallyselectsthecheapest.
Thechoiceofstratasizeiscrucialtotheeffectivenessofthisapproach.Iftoofewstrataareused,anagentisunabletodistinguishbetweenresourcesaccordingtoreli-ability;iftoomanystrataareusedthereislikelytobeasinglemost-trustedresourceleavingnoopportunitytodistinguishbasedoncost.Thenumberofstrataeffectivelydeterminestheemphasisgiventoreliabilityversuscost—morestrataemphasisesre-liabilityandreducestheinfluenceofcost,andvisaversa.Again,theeffectofdifferentstratasizesisdiscussedinSection7.
5.5WindowedTrust
Stratifiedtrustavoidstheoverfittingassociatedwithstricttrust,however,asnotedinSection4,itsuffersfromproblemsatstrataboundaries.Thealternativeistousewindowedtrust,inwhichthemosttrustedresourceisselectedaccordingtothetrustwindowthatthenumericalvalueliesin.Whereseveralresourcesareequallymosttrusted,oneisselectedarbitrarily.Again,agentsperiodicallyselectaresourcethatisnottrustedbywayofexploration.Thisapproachavoidsboththeoverfittingproblemandtheeffectsofstrataboundaries.Similarlytostratifiedtrust,thetrustdistance(i.e.thewindowsize)isvariable,withalargerdistancegivinghigherprecision,butattheriskofoverfitting.Section7discussestheeffectsoftrustdistance.
5.6WindowedTrustwithCost
Ourfinalselectionapproachcombineswindowedtrustwithcost.Similarlytostratifiedtrustwithcost,auserfirstdeterminesthecapableresources,thendeterminesthemosttrustedoftheseaccordingtowindowedtrust,andfinallyselectsthecheapest.Again,thesizeoftrustdistanceisimportant,withsmallerdistancesemphasisingreliabilityandreducingtheinfluenceofcost,andvisaversa.TheeffectsofdifferenttrustdistancesarediscussedinSection7.
8
6ExperimentalScenario
TheresourceselectionmechanismsdescribedabovehavebeenexploredusingtheGridSimsimulationtoolkit[4].Thistoolkitprovidesafeasiblewaytoexperimentwithsuchalgorithmsonareasonablylarge-scaleGridofheterogeneousresources.TheoverheadsandresourcerequirementsofinvestigatingthesealgorithmsinaphysicalGridareprohibitive,sincesignificantaccesstoGridresourceswouldberequired.OurfutureaimistoinstantiatethemosteffectiveofourresourceselectionmechanismsinarealGridenvironmentaftervalidationviasimulation.
IntheGridSimtoolkit,resourcescompriseasetofmachinesthatinturncompriseasetofprocessingelements(PEs).Eachresourcehascertaincapabilities,definedbyitscommunicationbandwidthandtheconfigurationandprocessorarchitectureofitsPEs.Atrun-timeresourceshaveavariableload,duetotasksbeingprocessedonbehalfofusersandduetobackgroundprocessing.Resourceload,atleastinpart,determineshowlongittakestoprocessagiventask.InGridSimeachresourcehasanassociated“calendar”,specifiedwhenconfiguringasimulation,thatdefineshowbackgroundloadvariesaccordingtotimeofday(i.e.peakandoff-peakloads),dayoftheweekandholidaysetc.WehaveextendedtheGridSimtoolkittoallowthesimulationofunreliableresources,andinourGridSimextensionresourceshaveanadditionalcharacteristicdefiningtheirreliabilityintermsofafailurerate.
Totestthevalidityofourapproach,andtheresourceselectionalgorithmsdescribedabove,aseriesofexperimentswereperformed.Arangeofuseragentswithdifferentdispositions,fromoptimistictopessimistic,wereusedinaselectionofGridcontexts,rangingfromthemajorityofresourcesbeingreliable,throughamixedset,tothemajor-ityofresourcesbeingunreliable.Eachoftheresourceselectionproposedalgorithmswasused,withvaryingnumbersoftruststrata(from1to5000)andtrustdistances(from0.0001to1).Forcontrolpurposesarandomselectionalgorithmwasalsoused,whereuseragentssimplysubmittedtaskstorandomresources.Variousnumbersofusersandresourceswereexperimentedwith,howevermostoftheresultspresentedbe-lowarefor30resourcesand10users.Eachusergeneratesarandomsetof500taskstobecompletedwithvaryinglengths,bandwidthrequirements,andpriorities.Foreachconfigurationoftheexperimentaldomainweperformed10runs,andtheresultsshownbelowrepresenttheaveragevaluesacrossthoseruns.
7ResultsandEvaluation
Inthissectionwepresentresultsobtainedfromusingtheresourceselectionalgorithmsdescribedabove.Weareprimarilyconcernedwiththreefactors:failurerate,exe-cutioncost,andtotalcost(i.e.executioncostplusanyfailurepenalties).Webeginbyfirstcomparingthestratifiedtrustmethodswithothersandsecondconsideringthewindowedtrustmethods,inbothcasesinvestigatingtheimpactofstratasizeandtrustdistance.Finally,weconsidertheeffectsoftheGridcontextintermsoftheproportionsofreliableandunreliableresources,andattempttoidentifythebestresourceselectionalgorithms.
9
400
failure vs. trust strata size
trust stratifiedtrust stratified with costtrust (strict comparison)
random
350
300
250
200
150
100
50
0
0 5 10 15 20 25 30
Figure2:Failurerateforthestratifiedtrustandstratifiedtrustwithcostresourceselec-tionmethods.
7.1ComparingtheStratifiedTrustApproach
Figure2showsthefailurerateforthestratifiedtrustandstratifiedtrustwithcostre-sourceselectionmethodsforavaryingnumberofstrata.Theseresultsrepresenttheaverageof10runsina“mixed”Gridresourceenvironment,i.e.thereisamixofreli-ableandunreliableresources5.Figure2alsoshowsthefailurerateforthestricttrustandrandomselectionmethods.Thefailurerateforthecostbasedselectionmethodisnotshown,sinceitistoohigh(anaverageof987)toappearonthegraph.Itcanbeseenimmediatelythatthelowestfailurerateisachievedforthestricttrustmethodand,withtheexceptionofverylownumbersofstrata,therandomselectionmethodgivesthehighestfailurerate.Itcanalsobeseenthatprovidedatleast3truststrataareusedthenbothstrata-basedmethodsperformbetterthanarandomselection(andsignificantlybetterthanacost-basedapproach).Inbothstrata-basedapproacheslowerfailureratesareachievedasmorestrataareused.Thesimplestrata-basedapproachtendstoperformaswellasthestricttrustapproachfor10ormorestrata,whilethestrata-basedwithcostapproachisconsistentlyonlyaround10-15%worsethanstrict-trustfor20ormorestrata(thetraceforbothmethodscontinuestobeflatfor30-5000strata,butforclarityisomittedfromthegraph).
RecallfromSection5thatonesignificantdisadvantageofusingstricttrustforresourceselectionisthatanarrowsetofresourcestendstobeused.IntheexperimentsillustratedinFigure2,thestricttrustapproachledtoausergenerallyinteractingwithasingletrustedresource.Thestrata-basedapproachesledtoawiderrangeofresourcesbeingused,wherefewerstratagaveawidersetofresources(asinglestrataleadstoallresourcesbeingusedequally).Atthepointwherethefailurerateforthestrata-basedapproacheslevelsoff(around10stratawithoutcostand20withcost)then,asforstrict
25000
execution cost vs. trust strata size
trust stratifiedtrust stratified with costtrust (strict comparison)
costrandom
20000
15000
10000
5000
0
0 50 100 150 200 250 300 350 400 450 500
Figure3:Executioncostforthestratifiedtrustandstratifiedtrustwithcostresourceselectionmethods.
trust,thereisasingletrustedresourcebeingused.However,beforethispointthereisawidersetofusedresources,andsoahigherresiliencetochangeandareducedlikelihoodofnegligibledifferencesbeinginterpretedassignificant.
TheexecutioncostforthestratifiedtrustmethodsisshowninFigure3,alongwiththeexecutioncostforthecost-based,stricttrustandrandomselectionmethods.Itcanbeseenthatastratifiedtrustwithcostapproachgivestheleastcost,followedbyacost-basedapproach,andthentherandom,stricttrust,andstratifiedtrustmethodsrespectively.Thereasonthatstratifiedtrustwithcostgivesalowerexecutioncostthanapurecost-basedapproachisthattheexecutionistheactualexecutioncost,andthereliableresourcesthatarefavouredbythestratifiedtrustwithcostapproacharethosewhoseactualexecutioncostislikelytobeclosertotheadvertisedcost.
ItcanbeseenfromFigs.2and3thatingeneralthestratifiedtrustwithcostap-proachgivesbetterresultsintermsofexecutioncostthanthestricttrust,cost-basedandrandomapproaches.However,thestratifiedtrustapproachgivesalowerfailureratebutonlybyaround10-14%.
7.2ComparingtheWindowedTrustApproach
Figure4showsthefailurerateforthewindowedtrustandwindowedtrustwithcostselectionmethodsforvaryingtrustdistances.Again,resultsareaveragedover10runsin“mixed”resourceenvironment.Itcanbeseenthatthecost-basedapproachproducesthehighestfailureratewhileastricttrustapproachgivestheleast.Foratrustdistanceoflessthan0.35thewindowedtrustwithcostmethodgavealowerfailureratethanarandomapproach,whilewindowedtrustwasalwaysbetter.Thewindowedtrustapproachgavesignificantlyfewerfailuresthanwindowedtrustwithcost,andforbothapproacheslargertrustdistancesincreasedfailures.Withatrustdistanceof1,thewindowedtrustapproachisequivalenttorandomselection,andthewindowedtrust
11
1200
failure vs. trust distance
windowed trustwindowed trust with costtrust (strict comparison)
costrandom
1000
800
600
400
200
0
0 0.2 0.4 0.6 0.8 1
Figure4:Failurerateofthewindowedtrustandwindowedtrustwithcostresourceselectionmethods.
withcostapproachisequivalenttothecost-basedapproach.
Inasimilarmannertothestratifiedapproaches,alargertrustdistanceleadstomoreresourcesbeingused.Foratrustdistanceof1,thewindowedtrustapproachusesallresourcesandthewindowedtrustwithcostusesallcheapest-costresources.Asthetrustdistanceisreduced,soisthesetofusedresources,suchthataverysmalldistance(<0.001)isequivalenttousingstrict-trust.
TheexecutioncostforthewindowedtrustmethodsisshowninFigure5,alongwiththeexecutioncostforthecost-based,stricttrustandrandomselectionmethods.Itcanbeseenthatacost-basedapproachgivestheleastcost,followedbywindowedtrustwithcost,randomandstricttrust.Thewindowedtrustmethodisthehighestcostforatrustdistanceoflessthan0.25,whileforlargerwindowsizesittendstowardthecostoftherandomapproach.
FromFigs.4and5itcanbeseenthatfortrustdistanceoflessthan0.35bothwin-dowedtrustapproachesgivealowerfailureratethanarandomorcost-basedapproach.Thewindowedtrustwithcostmethodgivesalowerexecutioncostthanallalternativesexceptcost-based,whilewindowedtrustgivesalowerfailureratethanallexceptstricttrust.
7.3ResourceSetting
Theaboveresultsillustratethecharacteristicsofeachoftheresourceallocationmeth-ods.However,inordertoselectthemostappropriatemethodforagivensituationwemustconsiderboththenatureofthatsituation(intermsofGridresources)andthelevelofpenaltyimposedforfailure.TothisendweconsiderthreedistinctGriden-vironments,withdifferingresourcereliabilities.Supposethattherearesixlevelsofreliability,definedasfollows.
12
25000
execution cost vs. trust distance
windowed trustwindowed trust with costtrust (strict comparison)
costrandom
20000
15000
10000
5000
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Figure5:Executioncostofthewindowedtrustandwindowedtrustwithcostresourceselectionmethods.
reliability
highlyreliable(HR)
3% 30% 90% reliable 20% unreliable 10%R20% 20% 20%U4% 10% 15%VHU3% failure rate for allocation methods (various resource sets) 700 reliable setmixed setunreliable set 600 500 400 300 200 100 0 S_10S_20S_25DC_0.01DC_0.02DC_0.05DC_0.15SC_10SC_20SC_25D_0.1S_5S_7DC_0.1SC_5SC_7D_0.01D_0.02D_0.05D_0.15Figure6:Failureratefordifferentallocationmethodsinvariousresourcesets(reliable,mixed,andunreliable). Figure7showshowthetotalexecutioncostvariesaccordingtoresourceset6.Again,itcanbeseenthatthetotalcostissmallestwhereresourcesarereliable,risesinamixedsituation,andishighestwhenresourcesareunreliable.Thetotalcostisde-terminedbybothfailurerate(intermsofpenalties)andexecutioncost.Itcanbeseenthatthelowestcostisobtainedbythestratifiedtrustwithcostandwindowedtrustwithcostalgorithms,butonlyforcertainvaluesofnumberofstrataandtrustdistances.Inparticular,thebestresultsareobtainedfor10-20strataortrustdistancesof0.01-0.02.Overall,forthesevaluesofstrataandtrustdistancethereislittletochoosebetweenthetwoapproaches;stratifiedtrustwithcostismarginallybetterinareliableresourcecontextandwindowedtrustwithcostismarginallybetterinanunreliablecontext. 8Conclusions InaGridenvironmentresourceselectionisfundamentaltominimisingthecostandfailureratethatuserincurs.Wehaveshownhowthenotionoftrustcanbeleveragedtoimplementasuitableresourceselectionmethodthatminimisesbothcostandrisk.Inthispaperwehavepresentedseveralresourceselectionalgorithmsbasedonalter-nativemethodsfortrustcomparisonnamely,strict,stratifiedandwindowedtrust.WehavedemonstratedtheuseofthesealgorithmsinaGridcontext.Ourresultsshowthattheuseoftrustsignificantlyreducesthefailurerateencounteredbyuserswhenutil-isingGridresources.Furthermore,wherecostisfactoredintoresourceselectiontheoverallcostofperformingataskisreduced.Wehaveshownthatthemosteffectiveapproachesarestratifiedtrustwithcostandwindowedtrustwithcostwithmoderate 120000 total cost for allocation methods (various resource sets) reliable setmixed setunreliable set 110000 100000 90000 80000 70000 60000 50000 S_10S_20S_25DC_0.01DC_0.02DC_0.05DC_0.15SC_10SC_20SC_25D_0.1S_5S_7DC_0.1SC_5SC_7D_0.01D_0.02D_0.05D_0.15Figure7:Totalexecutioncostfordifferentallocationmethodsinvariousresourcesets(reliable,mixed,andunreliable). stratanumbersandtrustdistances(around10-20and0.01-0.02respectively).Bothoftheseapproachesensurethatusersinteractwithamuchwidersetofresourcesthanwouldoccurwithastricttrustapproach,andsotheyaremoreresilienttoenvironmen-talchangeorincorrectinformation.Ourongoingworkisconcernedwithinvestigatingfurtherapproachestocombiningtrustandcostinformation,inparticularthroughtheuseoffuzzylogic,alongwithexplicitlyincludingthedesiretomaximisethenumberofresourcesused.FutureworkalsoincludestheinstantiationinarealGridenviron-mentofthemosteffectiveofourproposedmechanisms,namelystratifiedtrustwithcostandwindowedtrustwithcost,Finally,wealsointendtoapplythetrustframeworkandresourceselectionalgorithmstoapeer-to-peerscenario. References [1]A.Abdul-RahmanandS.Hailes.Supportingtrustinvirtualcommunities.InProceedingsoftheHawaiiInternationalConferenceonSystemSciences33,2000.[2]F.AzzedinandM.Maheswaran.IntegratingtrustintoGridresourcemanagementsystems.InProceedingsoftheInternationalConferenceonParallelProcessing,pages47–54,2002.[3]R.Buyya,D.Abramson,J.Giddy,andH.Stockinger.Economicmodelsforre-sourcemanagementandschedulinginGridcomputing.ConcurrencyandCompu-tation:PracticeandExperience,14:1507–1542,2002.[4]R.BuyyaandM.Murshed.GridSim:AtoolkitforthemodellingandsimulationofdistributedresourcemanagementandschedulingforGridcomputing.JournalofConcurrencyandComputation:PracticeandExperience,14(13–15):1–32,2002. 15 [5]C.CastelfranchiandR.Falcone.PrinciplesoftrustforMAS:Cognitiveanatomy,socialimportance,andquantification.InProceedingsoftheThirdInternationalConferenceonMulti-AgentSystems,pages72–79,Paris,France,1998.[6]J.R.D.Dyson,N.Griffiths,H.N.LimChoiJeung,S.A.Jarvis,andG.R.Nudd.TrustingagentsforGridcomputing.InProceedingsoftheIEEESMC2004Inter-nationalConferenceonSystems,ManandCybernetics,pages3187–3192,2004.[7]D.Gambetta.Canwetrusttrust?InD.Gambetta,editor,Trust:MakingandBreakingCooperativeRelations,pages213–237.BasilBlackwell,1988.[8]N.GriffithsandM.Luck.Coalitionformationthroughmotivationandtrust.InProceedingsoftheSecondInternationalConferenceonAutonomousAgentsandMulti-agentSystems,pages17–24,2003.[9]T.D.Huynh,N.R.Jennings,andS.Shadbolt.Developinganintegratedtrustandreputationmodelforopenmulti-agentsystems.InProceedingsofthe7thInterna-tionalWorkshoponTrustinAgentSocieties,pages65–74,2004.[10]S.HwangandC.Kesselman.AflexibleframeworkforfaulttoleranceintheGrid.JournalofGridComputing,1:251–272,2003.[11]S.Kirkpatrick,C.D.Gelatt,andM.P.Vecchi.Optimizationbysimulatedanneal-ing.Science,220(4598):671–680,1983.[12]S.Marsh.FormalisingTrustasaComputationalConcept.PhDthesis,UniversityofStirling,1994.[13]S.Marsh.Optimismandpessimismintrust.InProceedingsoftheIbero-AmericanConferenceonArtificialIntelligence,1994.[14]S.D.Ramchurn,C.Sierra,L.Godo,andN.R.Jennings.Acomputationaltrustmodelformulti-agentinteractionsbasedonconfidenceandreputation.InPro-ceedingsofthe6thInternationalWorkshopofDeception,FraudandTrustinAgentSocieties,pages69–75,2003.[15]O.F.RanaandL.Moreau.Issuesinbuildingagentbasedcomputationalgrids.InProceedingsofThirdWorkshopoftheUKSpecialInterestGrouponMulti-AgentSystems,2000.[16]K.Subramoniam,M.Maheswaran,andM.Toulouse.Amicro-economicmodelforresourceallocationinGridcomputingsystems.InIEEECanadianConferenceonElectricalandComputerEngineering,pages782–785,2002. 16 因篇幅问题不能全部显示,请点此查看更多更全内容