您的当前位置:首页正文

大数据:Spark Shuffle(三)Executor是如何fetch shuffle的数据文件

2024-02-23 来源:钮旅网


大数据:Spark Shuffle(三)Executor是如何fetch shuffle的数据文件

1. 前言

Executor是如何获取到Shuffle的数据文件进行Action的算子的计算呢?在ResultTask中,Executor通过MapOutPutTracker向Driver获取了ShuffID的Shuffle数据块的结构,整理成以BlockManangerId为Key的结构,这样可以更容易区分究竟是本地的Shuffle还是远端executor的Shuffle

2. Fetch数据

在MapOutputTracker中获取到的BlockID的地址,是以BlockManagerId的seq数组

[plain] view plain copy

Seq[(BlockManagerId, Seq[(BlockId, Long)])]

BlockManagerId结构

[plain] view plain copy

class BlockManagerId private (

private var executorId_ : String,

private var host_ : String,

private var port_ : Int,

private var topologyInfo_ : Option[String])

extends Externalizable

是以ExecutorId,Executor Host IP, Executor Port 标示从哪个Executor获取Shuffle的数据文件,通过Seq[BlockManagerId, Seq(BlockID,Long)]的结构,当前executor很容易区分究竟哪些是本地的数据文件,哪些是远端的数据,本地的数据可以直接本地读取,而需要不通过网络来获取。

2.1 读取本Executor文件

如何认为是本地数据?

Spark认为区分是通过相同的ExecutorId来区别的,如果ExecutorId和自己的ExecutorId相同,认为是本地Local,可以直接读取文件。

[plain] view plain copy

for ((address, blockInfos) <- blocksByAddress) {

totalBlocks += blockInfos.size

if (address.executorId == blockManager.blockManagerId.executorId) {

// Filter out zero-sized blocks

localBlocks ++= blockInfos.filter(_._2 != 0).map(_._1)

numBlocksToFetch += localBlocks.size

}

}

这里有两种情况:

同一个Executor会生成多个Task,单个Executor里的Task运行可以直接获取本地文件,不需要通过网络

同一台机器多个Executor,在这种情况下,不同的Executor获取相同机器下的其他的Executor的文件,需要通过网络

2.2 读取非本Executor文件

2.2.1 构造FetchRequest请求

获取非本Executor的文件,在Spark里会生成一个FetchRequest,为了避免单个Executor的MapId过多发送多个FetchRequest请求,会合并同一个Executor的多个请

求,合并的规则由最大的请求参数控制

[plain] view plain copy

spark.reducer.maxSizeInFlight

val targetRequestSize = math.max(maxBytesInFlight / 5, 1L)

对同一个Executor,如果请求多个Block请求的数据大小未超过targetRequestSize,将会被分配到同一个FetchRequest中,以避免多次FetchRequest的请求

[plain] view plain copy

val iterator = blockInfos.iterator

var curRequestSize = 0L

var curBlocks = new ArrayBuffer[(BlockId, Long)]

while (iterator.hasNext) {

val (blockId, size) = iterator.next()

// Skip empty blocks

if (size > 0) {

curBlocks += ((blockId, size))

remoteBlocks += blockId

numBlocksToFetch += 1

curRequestSize += size

} else if (size < 0) {

throw new BlockException(blockId, \"Negative block size \" + size)

}

if (curRequestSize >= targetRequestSize) {

// Add this FetchRequest

remoteRequests += new FetchRequest(address, curBlocks)

curBlocks = new ArrayBuffer[(BlockId, Long)]

logDebug(s\"Creating fetch request of $curRequestSize at $address\")

curRequestSize = 0

}

}

// Add in the final request

if (curBlocks.nonEmpty) {

remoteRequests += new FetchRequest(address, curBlocks)

}

多个FetchRequest会被随机化后放入队列Queue中,每个Executor从Driver端获取的ShuffID对应的BlockManagerID所管理的BlockID的状态是相同的顺序,如果不对FetchRequest进行随机化,那么非常有可能存在多个Executor同时向同一个Executor获取发送FetchRequest的情况,从而导致Executor的负载增高,为了均衡每个Executor的数据获取,随机化FetchRequest是非常有必要的。

2.2.1 发送FetchRequest

FetchRequest并不是并行提交的,对同一个Task来说,在Executor的做combine的时候是一个一个的BlockID块合并的,而Task本身就是一个线程运行的,所以不需要设计FetchRequest成并行提交,当一个BlockID完成计算后,才需要判断是否需要进行下一个FetchRequest请求,因为FetchRequest是多个Block提交的,为了控制Executor获取多个BlockID的shuffle数据的带宽,在提交FetchRequest的时候控制了请求的频率

在满足下面以下条件下,才允许提交下个FetchRequest

当正在请求的所有BlockId的内容和下一个FetchRequest的请求内容之和小于maxBytesInFlight的时候,才能进行下一个FetchRequest 的请求

当正在请求的数量小于所设置的最大的允许请求数量的时候,才能进行下一个FetchRequest的请求,控制参数如下:

[plain] view plain copy

spark.reducer.maxReqsInFlight

2.2.2 完整的FetchRequest流程

Executor A 通过ExternalShuffleClient 进行fetchBlocks的操作,如果配置了

[plain] view plain copy

io.maxRetries

最大重试参数的话,将启动一个能重试RetryingBlockFetcher的获取器

初始化TransportClient,OneForOneBlockFetcher获取器

在OneForOneBlockFetcher里首先向另一个Executor B发送了OpenBlocks的询问请求,里面告知ExecutorID, APPID和BlockID的集合

Executor B获取到BlockIDs,后通过BlockManager获取相关的BlockID的文件(通过mapid, reduceid获取相关的索引和数据文件),构建FileSegmentManagedBuffer

通过StreamManager(OneForOneStreamManager) registerStream 生成

streamId,和StreamState(多个ManagedBuffer,AppID)的缓存

返回所生成的StreamId

Executor B 返回给 StreamHandle的消息,里面包含了StreamId和Chunk的数量,这里chunk的数量其实就是Block的数量

Executor A 获取到 StreamHandle的消息,一个一个的发送ChunkFetchRequest里面包含了StreamId, Chunk index,去真实的获取Executor B的shuffle数据文件

Executor B 通过传递的ChunkFetchRequest消息获取到StreamId, Chunk index, 通过缓存获取到对应的FileSgementManagedBuffer,返回chunkFetchSuccess消息,里面包含着streamID, 和FileSegmentManagedBuffer

在步骤3-6步骤里是堵塞在Task线程里,而步骤7一个一个发送ChunkFetchRequest后,并不堵塞等待返回结果,结果是通过回调函数来实现的,在调用前注册了一个回调函

[plain] view plain copy

client.fetchChunk(streamHandle.streamId, i, chunkCallback);

private class ChunkCallback implements ChunkReceivedCallback {

@Override

public void onSuccess(int chunkIndex, ManagedBuffer buffer) {

// On receipt of a chunk, pass it upwards as a block.

listener.onBlockFetchSuccess(blockIds[chunkIndex], buffer);

}

@Override

public void onFailure(int chunkIndex, Throwable e) {

// On receipt of a failure, fail every block from chunkIndex onwards.

String[] remainingBlockIds = Arrays.copyOfRange(blockIds, chunkIndex, blockIds.length);

failRemainingBlocks(remainingBlockIds, e);

}

}

在这里的listener就是前面fetchBlocks里注入的BlockFetchingListener

[plain] view plain copy

new BlockFetchingListener {

override def onBlockFetchSuccess(blockId: String, buf: ManagedBuffer): Unit = {

// Only add the buffer to results queue if the iterator is not zombie,

// i.e. cleanup() has not been called yet.

ShuffleBlockFetcherIterator.this.synchronized {

if (!isZombie) {

// Increment the ref count because we need to pass this to a different thread.

// This needs to be released after use.

buf.www.nc630.comretain()

remainingBlocks -= blockId

results.put(new sizeMap(blockId), buf,

SuccessFetchResult(BlockId(blockId), address,

remainingBlocks.isEmpty))

logDebug(\"remainingBlocks: \" + remainingBlocks)

}

}

logTrace(\"Got remote block \" + blockId + \" after \" + Utils.getUsedTimeMs(startTime))

}

override def onBlockFetchFailure(blockId: String, e: Throwable): Unit = {

logError(s\"Failed to get block(s) from

${req.address.host}:${req.address.port}\

results.put(new FailureFetchResult(BlockId(blockId), address, e))

}

}

如果获取成功将封装SuccessFetchResult里面保存着blockId,地址,数据大小,以及ManagedBuffer,并保存到results的queue中

2.2.3 Fetch 迭代获取数据文件

Executor在BlockStoreShuffeReader的read函数中构建

ShuffleBlockFetcherIterator,ShuffleBlockFetcherIterator是个InputStream的迭代器,每个BlockID生成一个InputStream,在设计里并没有区分是本地的还是远端的,每一次迭代都是从堵塞的Queue里获取到BlockID的ManagerBuffer,通过调用ManagerBuffer.createInputStream获取每个InputStream,进行读取并且反序列话,进行KV的combine.

如何判断所有的BlockID已经读取完了?

[plain] view plain copy

override def hasNext: Boolean = numBlocksProcessed < numBlocksToFetch

在hasNext里判断当前的是否已经达到需要读取的block数量了,每一次读取下一个block的时候都会在numBlocksProcessed+1,在读取失败的情况下会直接抛出异常。

3. Fetch 交互协议

在前面的博客里描述了很多交互协议都使用了Java的原生态的反序列化,但在上文描述的Fetch协议中,是Spark单独定义的一套协议标准,自己实现encoder和decoder

ChunkFetchRequest, ChunkFetchSuccess, RpcRequest, RpcResponse.... 这些

都是直接使用Java进行封装,在Network-Commmon的包里,所有的消息最后都实现了基本的接口。

3.1 Message Encoder

[java] view plain copy

public interface Message extends Encodable{}

而核心的是Encodable,有点类似Java的Serializable接口,需要自己实现Encoder和Decoder的方法

[java] view plain copy

public interface Encodable {

/** Number of bytes of the encoded form of this object. */

int encodedLength();

/**

* Serializes this object by writing into the given ByteBuf.

* This method must write exactly encodedLength() bytes.

*/

void encode(ByteBuf buf);

}

核心的序列话的encode的入参数是ByteBuf 很符合Netty里的NIO所暴露出的接口,同时也要注意这是Netty的ByteBuf 和Netty是耦合了

如何让Netty调用Encodable encode方法呢?

在Netty里暴露出的类MessageToMessageEncoder,里暴露encode的抽象方法,这是一个可以允许对传递的消息进行一次自定义的编码

[java] view plain copy

MessageToMessageEncodersnippet_file_name=\"blog_20170509_13_9596623\" class=\"java\">protected

abstract

void

code_snippet_id=\"2383119\"

name=\"code\"

encode(ChannelHandlerContext

paramChannelHandlerContext, I paramI, List paramList)

/* */ throws Exception;

在Spark里自己实现MessageToMessageEncoder的encoder的方法

[java] view plain copy

public final class MessageEncoder extends

MessageToMessageEncoder {

private static final Logger logger =

LoggerFactory.getLogger(MessageEncoder.class);

/***

* Encodes a Message by invoking its encode() method. For non-data messages, we will add one

* ByteBuf to 'out' containing the total frame length, the message type, and the message itself.

* In the case of a ChunkFetchSuccess, we will also add the ManagedBuffer corresponding to the

* data to 'out', in order to enable zero-copy transfer.

*/

@Override

public void encode(ChannelHandlerContext ctx, Message in, List out) throws Exception {

Object body = null;

long bodyLength = 0;

boolean isBodyInFrame = false;

// If the message has a body, take it out to enable zero-copy transfer for the payload.

if (in.body() != null) {

try {

bodyLength = in.body().size();

body = in.body().convertToNetty();

isBodyInFrame = in.isBodyInFrame();

} catch (Exception e) {

in.body().release();

if (in instanceof AbstractResponseMessage) {

AbstractResponseMessage resp = (AbstractResponseMessage) in;

// Re-encode this messag www.whfengjun.come as a failure response.

String error = e.getMessage() != null ? e.getMessage() : \"null\";

logger.error(String.format(\"Error processing %s for client %s\

in, ctx.channel().remoteAddress()), e);

encode(ctx, resp.createFailureResponse(error), out);

} else {

throw e;

}

return;

}

}

Message.Type msgType = in.type();

// All messages have the frame length, message type, and message itself. The frame length

// may optionally include the length of the body data, depending on what message is being

// sent.

int headerLength = 8 + msgType.encodedLength() + in.encodedLength();

long frameLength = headerLength + (isBodyInFrame ? bodyLength : 0);

ByteBuf header = ctx.alloc().heapBuffer(headerLength);

header.writeLong(frameLength);

msgType.encode(header);

in.encode(header);

assert header.writableBytes() == 0;

if (body != null) {

// We transfer ownership of the reference on in.body() to MessageWithHeader.

// This reference will be freed when MessageWithHeader.deallocate() is called.

out.add(new MessageWithHeader(in.body(), header, body, bodyLength));

} else {

out.add(header);

}

}

}

在encoder的方法里去对Message进行了编码

3.2 Message Decoder

和3.1类似,Spark 针对Netty 封装了MessageDecoder

[java] view plain copy

public final class MessageDecoder MessageToMessageDecoder

在decode方法里,直接对ByteBuf进行decode会Message

[java] view plain copy

extends

public void decode(ChannelHandlerContext ctx, ByteBuf in, List out) {

Message.Type msgType = Message.Type.decode(in);

Message decoded = decode(msgType, in);

assert decoded.type() == msgType;

logger.trace(\"Received message {}: {}\

out.add(decoded);

}

对每个不同的Message 分别调用了各自的decode的方法。

3.3 传递文件

3.3.1 发送文件

还记的前面fetch文件的返回结果么?

[java] view plain copy

respond(new ChunkFetchSuccess(req.streamChunkId, buf));

在buf里的ManagedBuffer是FileSegmentManagedBuffer,而在刚才的encode函数里

[java] view plain copy

body = in.body().convertToNetty();

对ChunkFetchSuccess来说in.body是FileSegmentManagedBuffer,而它封装的方法里

[java] view plain copy

public Object convertToNetty() throws IOException {

if (conf.lazyFileDescriptor()) {

return new DefaultFileRegion(file, offset, length);

} else {

FileChannel fileChannel = new FileInputStream(file).getChannel();

return new DefaultFileRegion(fileChannel, offset, length);

}

}

使用了DefaultFileRegion,这是一个Netty里传递文件使用零拷贝的方式,在FileRegion里是调用TransferTo进行零拷贝复制文件,关于零拷贝在这里不介绍了

[java] view plain copy

public abstract long transferTo(WritableByteChannel

paramWritableByteChannel, long paramLong)

throws IOException;

但是问题是encode的方法里返回的MessageWithHeader对象,并不是DefaultFileRegion

[java] view plain copy

if (body != null) {

// We transfer ownership of the reference on in.body() to MessageWithHeader.

// This reference will be freed when MessageWithHeader.deallocate() is called.

out.add(new MessageWithHeader(in.body(), header, body, bodyLength));

}

我们来看看什么是MessageWithHeader

[java] view plain copy

class MessageWithHeader extends AbstractReferenceCounted implements FileRegion

原来是FileRegion,对Netty来说FileRegion最后调用的TransferTo进行传递

[java] view plain copy

public long transferTo(final WritableByteChannel target, final long position) throws IOException {

Preconditions.checkArgument(position == totalBytesTransferred, \"Invalid position.\");

// Bytes written for header in this call.

long writtenHeader = 0;

if (header.readableBytes() > 0) {

writtenHeader = copyByteBuf(header, target);

totalBytesTransferred += writtenHeader;

if (header.readableBytes() > 0) {

return writtenHeader;

}

}

// Bytes written for body in this call.

long writtenBody = 0;

if (body instanceof FileRegion) {

writtenBody = ((FileRegion) body).transferTo(target, totalBytesTransferred - headerLength);

} else if (body instanceof ByteBuf) {

writtenBody = copyByteBuf((ByteBuf) body, target);

}

totalBytesTransferred += writtenBody;

return writtenHeader + writtenBody;

}

在这里巧妙的将Header和文件封装成了一个文件的region,在TransferTo的函数里先传递头,然后在调用

[java] view plain copy

writtenBody = ((FileRegion) body).transferTo(target, totalBytesTransferred - headerLength);

来传递文件,而其他的ByteBuf 直接写到Write的channel 里。

3.3.2 接收文件

在3.2章节里介绍了如何decode message的方法,对消息ChunkFetchSuccess进行decode生成ChunkFetchSuccess对象

[java] view plain copy

public static ChunkFetchSuccess decode(ByteBuf buf) {

StreamChunkId streamChunkId = StreamChunkId.decode(buf);

buf.ret www.tt951.comain();

NettyManagedBuffer managedBuf = new

NettyManagedBuffer(buf.duplicate());

return new ChunkFetchSuccess(streamChunkId, managedBuf);

}

注意:这里的ManagedBuffer不在是FileSegmentManagedBuffer,而是NettyManagedBuffer,里面的ByteBuf才是文件的内容

4. 总结

Fetch Shuffle data 数据区分本地数据,远端数据,本地数据和远端数据的区分依据是ExecutorID

单个Task线程Fetch Shuffle Data数据是以Block为最小单位,串行获取并进行运算

远端Fetch的多个Block 数据,是异步发送请求,通过回调函数来异步获取返回结果提交到堵塞的队列中,让Task线程获取、读取,运算

Fetch的交互协议,并没有使用Java的默认反序列的协议,而是自己独立封装Encode、Decode,进行编码和解码

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- 版权所有