您的当前位置:首页正文

Intracellular delivery of nanomaterials How to catch endosomal escape in the act

2021-04-11 来源:钮旅网
NanoToday(2014)9,344—364

Availableonlineatwww.sciencedirect.com

ScienceDirect

journalhomepage:www.elsevier.com/locate/nanotoday

REVIEW

Intracellulardeliveryofnanomaterials:Howtocatchendosomalescapeintheact

ThomasF.Martensa,b,∗,KatrienRemauta,JoDemeestera,StefaanC.DeSmedta,∗∗,KevinBraeckmansa,b

a

LaboratoryforGeneralBiochemistryandPhysicalPharmacy,FacultyofPharmaceuticalSciences,GhentUniversity,Harelbekestraat72,B-9000Ghent,Belgiumb

CenterforNano-andBiophotonics(NB-Photonics),GhentUniversity,Harelbekestraat72,9000Ghent,Belgium

Received31January2014;receivedinrevisedform11April2014;accepted21April2014Availableonline28May2014

KEYWORDS

Endosomalescape;Nanomaterials;Assays;Fusion;

Protonsponge;Poreformation

SummarySuccessfulcytosolicdeliveryofnanomaterialsisbecomingmoreandmoreimpor-tant,giventheincreaseinintracellularapplicationsofquantumdots,goldnanoparticles,liposomaldrugformulationsandpolymericgenedeliveryvectors.Mostnanomaterialsaretakenupbythecellviaendocytosis,yetendosomalescapehaslongbeenrecognizedasamajorbot-tleneckincytosolicdelivery.Althoughitisessentialtodetectandreliablyquantifyendosomalescape,noconsensushasbeenreachedsofaronthemethodstodoso.Thisreviewwillsum-marizeanddiscussforthefirsttimethedifferentassaysusedtoinvestigatethiselusivesteptodate.

©2014ElsevierLtd.Allrightsreserved.

Introduction

Cytosolicdeliveryofnanomaterialshasgainedalotofinterest.Recentdevelopmentsinnanoscienceandnano-technologyhavecreatedalibraryofnanomaterialswith

Correspondingauthorat:Laboratoryforgeneralbiochemistryandphysicalpharmacy,FacultyofPharmaceuticalSciences,GhentUniversity,Harelbekestraat72,B-9000Ghent,Belgium.Tel.:+3292648049;fax:+3292648189.

∗∗Correspondingauthor.Tel.:+3292648076;fax:+3292648189.E-mailaddresses:Thomas.Martens@Ugent.be(T.F.Martens),Stefaan.Desmedt@Ugent.be(S.C.DeSmedt).

potentialapplicationsinthevisualizationofsubcellularstructuresanddynamics,intracellulardeliveryofthera-peutics,genetherapyandthetreatmentordiagnosticsoforganelle-specificdiseases[1—4].Importantly,efficientdeliverytotheintracellularenvironmentisnecessaryforexertingtheirintendedfunction.Thoughphysicaltech-niquesaresometimesusedtoforcethenanoparticlesacrosstheplasmamembrane(microinjection,electroporation,...)[4],uptakeofforeignnanomaterialsusuallyreliesonthecell’sinnateendocyticuptakemechanism.Thisresultsinthecargoresidinginendosomes(Fig.1),thusbeingphysi-callyseparatedfromthecytosolbytheendosomallimitingmembrane[5,6].Furthermore,maturationofmosttypesofendosomestomultivesicularlateendosomesiscoupled

http://dx.doi.org/10.1016/j.nantod.2014.04.0111748-0132/©2014ElsevierLtd.Allrightsreserved.

Intracellulardeliveryofnanomaterials

345

Figure1Mostnanoparticles,organicandinorganicones,fordrugdeliveryaswellasforimaging,areusuallytakenupbytargetcellsviaendocytosis,leadingtosequestrationofthecargointheendocyticvesicles(blueinteriordenotesneutralpH).Acidificationoftheendosomestypicallywilltriggeradestabilizationoftheendosomalmembranebythedeliveryvector(orangeinteriordenotesacidifiedpH).Afterdestabilizationoftheendosomalmembrane,dependingonthedeliveryvector,thecargowillbereleasedbyaburstingeffectifanosmoticgradientisestablishedbyendosomalbuffering,throughporesformedintheendosomalmembranebypersistentdestabilization,orbymembranefusionifthecargowaspackagedinanenvelopeddeliveryvector.Differentassaysareavailabletoinvestigatetheseendosomalescapemechanisms,asindicatedinred.Alsotheefficiencyofendosomalescapecanbequantifiedwithavarietyoftechniques,asindicatedinblue.IFP=intracellularfluorescenceprofile.

withadecreaseinintravesicularpHandfusionwithlyso-somes,potentiallyresultingindestructionofthefunctionalnanomaterialsbydegradativelysosomalenzymes[7].Thisendolysosomalsequestrationandhydrolyticdegradationofthenanoparticulatecargoimpliesthattheyshouldescapefromtheendosomesinatimelymannertoexertorpreservetheirintendedfunction.

Forinstance,semiconductornanocrystals,orquantumdots(Qdots),arebeingexploredtobeusedforlabelingintracellularstructuresandmoleculesbothinvitroandinvivo[8—10].Notonlydoessequestrationpreventtheiraccesstothecytosol,italsoresultsintoxicityasaresultfromionleachingbydegradationintheendolysosomalenvi-ronment,especiallyinthecaseofCd2+-containingQdots[11].Forcellularlabelingandinvivocelltracking,MRIcon-trastagentscanbedeliveredtothecellinteriorintheformofparamagneticGadolinium-nanoparticles(Gd3+)[12]orsuperparamagneticironoxide(SPIO)nanoparticles[13,14].IthasbeenshownthatsequestrationofsuchcontrastagentsinintracellularvesiclescouldresultinquenchingoftheMRIsignal[12,13].Therefore,itisoftenstronglypreferredthatnanoparticlesforimagingapplicationsshouldescapefrom

theendolysosomalpathwaytotheintracellularenvironment[12].

Intracellulardrugdelivery,forinstanceadaptiveimmunotherapyandgenetherapy,ismadepossiblebypackagingtherapeutic(macro)moleculesinnanomedicineparticlessuchaspolymermicellesordendrimers,nanogels,liposomes,mesoporoussilicaparticles,etc.,thatshouldprovideprotectiontoandmediateintracellulardeliveryofthesetherapeutics[2,15,16].However,therapeuticnucleicacidsexerttheireffectinthecytosolornucleusofthecell.MHC-IdependentantigenpresentationtoCD8+T-cellsalsoreliesonantigenicproteinorpeptidedeliverytothecytosolofantigenpresentingcells(APCs)suchasdendriticcellsormacrophages[17].Endolysosomalsequestrationandhydrolyticdegradationdrasticallydecreasestheefficiencyofdrugdeliverysystemsandshouldbecounteredbyefficientendosomalescapeofthetherapeuticcargotothecytosol.

Awidevarietyofapproacheshavebeendevelopedtofacilitatereleaseofnanoparticlesandmoleculesfromendo-somesbeforelysosomaldegradation,suchasfusogenicpep-tidesandphotochemicalinternalization(PCI),whichhave

346

beenthetopicofnumerousreviews[1,2,4,6,8,16,18,19].Despitedecadesofresearch,however,endosomalescapeisstillrecognizedasaveryinefficientprocessandamajorbottleneckincytosolicdeliveryofnanomaterials[2,16,18].Inordertoimproveonthosemethods,itisquiteessen-tialbeingabletodetectandreliablyquantifyendosomalescape[18,20].Althoughdifferentassayshavebeenpro-posedtodate,thereisnoconsensusyetonhowtoevaluatethiscriticalstepintheintracellulardeliveryprocess.

Inthisreview,weaimtoprovideanexhaustiveoverviewofmethodologiesusedtoevaluateendosomalescape,andtodiscusstheusefulnessandlimitationsofeach.First,abriefoverviewispresentedofthedifferentmechanismsandcom-poundstoenhanceendosomalescape.Next,anoverviewofreportedendosomalescapeassaysisgiven,withexemplaryapplicationsanddiscussionontheunderlyingassumptionsandlimitationsinherenttoeachtechnique.Specifically,adistinctionismadebetweenassaysinvestigatingthemech-anismofendosomalescape(relatingtomembranefusionormembraneintegrity),andthosethataimtovisualizeorquantifycargoreleaseinthecytosol,regardlessofthemechanismofendosomalescape.

Enhancingendosomalescape

Mostman-madematerialstoenhanceendosomalescapehavebeeninspiredbyviralandbacterialinfectionpathwaysinthecell,whichrelyonendocytosisfollowedbycleverlyevolvedwaysofescapingtowardthecytosoliccompart-ment[21,22].Typically,theendosomalmembraneisinitiallydestabilized,afterwhichendosomalescapecanoccurthrougheitherporeformation,ruptureormembranefusion,dependingonthenanoparticle’scharacteristics(Fig.2).Wewillbrieflydiscusstheseendosomalescapemechanisms,thoughthereaderisreferredtoseveralrecentreviewsonthistopicforamoredetailedoverview[1,2,4,18].

Endosomaldestabilizationandporeformation

Endosomalescapeischaracterizedbyaninitialmembranedestabilization(Fig.2B),whichisconfinedtotheendosomesasaresultoftheinherentacidificationduringendosomalmaturation(Fig.2A).Themostfrequentlyproposedmech-anismsforcausingendosomalmembranedestabilization,cationicchargeandmembrane-destabilizingpeptides,arediscussedbelow.Furthermore,persistentmembranedesta-bilizationcanleadtoporeformationintheendosomalmembrane,resultinginleakageofmoleculesandsmallerparticlesfromtheendosomalcompartmenttothecytosol(Fig.2C).

Sincetheouterlayersofendosomalmembranesaretypicallythoughttobecomposedofphospholipidswithanoverallnegativecharge,theinteractionofendoso-mallytrappedcationicnanoparticleswiththeendosomalmembraneisthoughttoinducea‘‘flip-flop’’mecha-nism,whereanionicphospholipidsfromthecytosolicleafletwillfliptotheintraluminalsideoftheendo-some[23—25].Thischarge-neutralizedionpairwillresultinnon-lamellarphasechangesandsubsequentmembranedestabilization[25].Apermanentcationicchargecanresultfromquaternaryaminegroups,asisthecase

T.F.Martensetal.

withcationiclipidssuchasN[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammoniumchloride(DOTMA)or1,2-dioleyl-3-trimethylammonium-propane(DOTAP).Alternatively,pro-tonableaminegroupsonthenanoparticlesurfacecanalsoprovideacationiccharge,i.e.formaterialssuchaspoly(ethyleneimine)(PEI),poly(L-lysine)(PLL)andchitosan.Importantly,sincethecationicchargecansometimesbeenhancedalongwiththeacidificationoftheendosomalcompartment,membranedestabilizationwillthenprimarilyoccurinacidicendosomes.

Membrane-destabilizingpeptides,inspiredbynaturalviralentrypeptidessuchastheHA-2subunitoftheinfluenzavirushemagglutinin,areusuallycalledfusogenicpeptidessincetheirconformationalchangeexposeshydrophobic(␣-helical)domains,allowingthemtointeractwiththelipidmembraneoftheendosome.Theycantypicallybedividedinthreedifferentclassesbasedontheaminoacidresiduespresentinthepeptideandaslightlydifferentmechanismofaction[21,26]:(1)anionicamphiphilicpeptides,suchasINF7andE5WYG,whichcontainglutamateresiduesandundergoaconformationalchangefromarandomcoiltoan␣-helixunderacidicconditions(pH5—5.5);(2)histidinerichpeptidessuchasH5WYGthatprotonateundermildlyacidicconditionsanddestabilizemembranesduetocationicinteractionsandanosmoticbufferingeffect(alsoseesection‘Endosomalrupture’);(3)cationicamphiphilicpeptideswithlysineaminoacids,suchasK5andKALAthatcanbindanionicnucleicacidsandinduceapH-independentmembranedestabilizationbycationicinteractionswiththeendosomalmembrane.GALAisalsowidelyknownandcontainsbothglutamateresiduesforpHdependenceandhistidineaminoacidsforcationicchargeandbuffering[27].Adifferentapproachtoachievemembranedestabilization,withoutrelyingonacidification,entailstheinteractionoftheendosomalmembranewiththelysogenicpeptideL-leucyl-L-leucinemethylester(Leu-Leu-OMe).Thisdipep-tideisconvertedintoamembrane-lysingcompound,notbyanacidicenvironment,butbythelysosomalenzymedipeptidylpeptidaseI[25,28].

Endosomalrupture

Whereaspersistentmembranedestabilizationcanresultingradualleakageofsmallnanomaterialsthroughporeformation,burstingofendosomeshasalsobeenproposedasamechanismforendosomalescape(Fig.2D).Likelythebest-knownmechanismtoenhanceendosomalescapeisthe‘‘protonspongeeffect’’[29],whichisbasedoncationicpolymersorlipidswithexcessunchargedproton-ableaminegroupsthatcanbufferendosomalacidificationbyabsorbingprotonsintheendolysosomalcompartment.AslongasATPispresentinthecytosol,V-typeATPaseswillkeeppumpingprotonsagainsttheirelectrochemicalgradi-entacrosstheendolysosomalmembrane,withanassociatedinfluxofcounter-ionstobalancethetransmembranevoltagedifference(Fig.2A)[7,30].Endolysosomalruptureiscur-rentlybelievedtoresultfromacombinationofthreeeffects(Fig.2D).First,thebufferingcompoundswillinduceanini-tialmembranedestabilizationbytheflip-flopeffectinducedbythecationicchargeoftheprotonatedaminegroups.Sec-ond,electrostaticrepulsionoftheprotonatedaminegroupsresultsinswellingofthebufferingagent,alsoreferred

Intracellulardeliveryofnanomaterials

347

Figure2Differentproposedmechanismsforendosomalescape.(A)Normalacidificationoftheendosomesduringmaturationtolateendosomes.ATP-driventransportofH+-ionsacrosstheendosomalmembranebyV-typeATPasesproducesanelectricalgradient,whichisbalancedinpartbytheinfluxofcounter-ions,presumablyCl−-ions.(B)Uponacidification,cationicparticlesinducenegativelychargedphospholipidsontheouterendosomalleaflettofliptotheluminalsideoftheendosomebyaflip-flopeffect,resultinginacharge-neutralpairandcausingmembranedestabilization.Alternatively,fusogenicorlysogenicpeptideswillundergoconformationalchangesinacidicenvironments,resultinginatriggereddestabilizationoftheendosomalmembrane.

348

T.F.Martensetal.

toasthe‘‘umbrellaeffect’’[16],furthercontributingtomembranedestabilization[10].Third,theconstantinfluxofcounter-ionstobalancetheelectricpotentialcreatesanosmoticgradientbetweenvesicleandcytosol,leadingtoaninfluxofH2Otorestoretheosmoticbalance.Withanalreadydestabilizedendolysosomalmembrane,theswellingoftheintracellularvesiclesresultsinburstingoftheendosomeandreleaseofthecargointhecytosol.Typicalexamplesofpro-tonspongecompoundsarePEI[31],poly-amidoamines[32]andimidazole-containingpolymers(e.g.histidine)[2,18].Theyaretypicallyincorporatedintothenanoparticlesasthedeliveryvector,althoughinsomecasesthebufferingcom-poundsareeitherco-incubatedwiththenanoparticles(e.g.monensin)oraddedafterwards(e.g.chloroquine).Similartochloroquine,ammoniumchlorideandmethyl-aminearelipophilicintheunprotonatedformandwillpenetratecellu-larandvesicularmembranes.Uponprotonationinacidifyingendosomes,thesecompoundsbecometrappedandcanactasprotonsponges[18].

Incontrasttomembranedestabilizationtriggeredbytheendolysosomalcompartmentonly,certainphysicaltech-niquesallow(spatio)-temporallycontrolleddisruptionofintracellularvesicles.Awell-knownstrategytoinducerup-turewithouttheneedforacidificationisPCI[33,34],whichinvolvestheuseofamphiphilicphotosensitizers,e.g.ethyleosin[35]orTPPS2a(mesotetraphenylporphinecarryingtwosulfonategroupsonadjacentphenylrings)[33].Afterpulse-chasedadministrationofthephotosensitizertothecellsinvitro,theywillaccumulateinintracellularmembranes,amongstwhichtheendosomalmembranes.Uponillumina-tionwithaspecificlightsource,excitationofthephoto-sensitizersinducestheformationofreactiveoxygenspecies(ROS),primarilysingletoxygen.Duetoashortlifetime,thedamagecausedbythishighlyreactiveintermediatewillbemainlyconfinedtotheproximatemembranes[33].Lighthasalsobeenusedasatriggerforheat-inducedendosomaldestabilizationorrupture,forexamplebyNIRirradiationofreducedgrapheneoxide[36]orbythegenerationofvapornanobubblesthroughpulsed-laserirradiationofgoldnanoparticles[37].Analternativemethodtoinduceburstingoftheendosomalvesiclesinatemporallycontrolledman-neristheso-called‘‘osmolyticshock’’.Thisisattainedbyloadingtheintracellularvesicleswithahypertonicsolutionviaendocytosisandafterwardsincubatingthecellswithahypotonicsolution,causingtheintracellularvesiclestoswellandburst[28,38,39].Similarly,carriermaterialshavebeendevelopedwhichexhibitswellinguponadecreaseintem-perature[40,41],therebydisruptingintracellularvesiclescontainingtheparticlesaftera‘‘coldshock’’treatment.

cytosol(Fig.2E).Endosomalescapethroughfusiononlyoccurswhenthenanoparticleitselfisenvelopedbyamembrane.Itisbeneficialiftheendosomalmembraneisalreadydestabilized.Thisisthecaseforcationiclipo-somes,whosechargeensurescloseinteractionwithanddestabilizationoftheendosomalmembrane,resultinginfusionandreleaseoftheencapsulatedcargo.Incorporationoffusogenic‘‘helper’’lipids(e.g.1,2-dioleoyl-sn-glycerol-3-phosphatidylethanolamineorDOPE)furtherenhancesendosomalfusionandescape,byundergoingacon-formationalchangeuponacidificationandpromotinganon-lamellarlipidphasechange[42].Cholesterolhasalsobeenintegratedinliposomalparticlestoenhancefusogenic-ityinapH-independentway,bothattheplasmamembraneandafterendocytosis[43].

Studyingendosomalescapemechanisms

Aspreviouslyhighlighted,endosomalescapeinvolvesanini-tialmembranedestabilization,followedbyporeformation,endosomalruptureormembranefusion.Typically,themech-anismsforendosomalescapeareassayedbyinvestigatingtheintegrityoftheendosomalmembrane.Thoughtheseassayscanbeperformedincells,amorecontrolledenviron-mentcanbecreatedexcellulobyusingartificialendosomes.Theseartificialendosomesarefrequentlymodeledbycre-atingliposomeswithmembranesofaknownphospholipidcomposition,whichtheninteractwiththecompoundunderinvestigation.

VerifyingpH-inducedmembranedestabilization

Endosomalmembranefusion

Fusionofananocarrierwiththeendosomalmembranecanresultinescapeofthenanocarrier’scargointothe

TheinitialmembranedestabilizationofendosomalescapeisusuallytriggeredbyanacidicpH,leadingtoconformationalchangesoffusogeniccompoundsoraflip-flopeffectbycationicparticles.TheeffectofpHonthismembranedesta-bilizationisinvestigatedbycomparingendosomalescapescenarioswherepHeitherdoesordoesnotaffectthecationicorfusogeniccompounds.Thedifferenceinendo-somalescapebetweenthenormalandthepH-irrelevantscenarioisthenevaluatedusingthedifferentendosomalescapeassayswhichwillbediscussedfurther,andhavebeensummarizedinFig.1.RemovingtheinfluenceofpHonendosomalescapeisdonebyeitheralteringthecom-poundunderinvestigationsoitisnolongerpH-reactive[44],orthepHoftheendosomalcompartmentitselfisaltered.Inacontrolledexcelluloenvironment,thepHcanbemodeledbyusingbufferswithdifferentpH[45,46].Incellularassays,acidificationcanbeblockedbytheuseofinhibitors.Severalstudiesreporttheinhibitionofendo-somalacidificationbyusingahigherbufferingcapacityintheextracellularmedium[47]orco-incubationwithbuffer-ingagentsuchasammoniumchloride[48,49],chloroquine

(C)Persistentmembranedestabilizationbycationicnanoparticlesorbyfusogenicpeptidescanresultinporeformation.(D)Whenbufferingcompoundsarefoundintheendolysosomallumen,acidificationwillbebufferedbytheirproton-absorbingcharacteristics.Theincreasedcationicchargeandswellingofthecompound,asaresultoftheongoingprotonationoffreeprotonableamines,willresultinmembranedestabilization.Acontinuedinfluxofchlorideionswillcreateanosmoticgradientandinternalpressure,leadingtoruptureoftheendosomesandburstingofthecontentsintothecytosol.(E)Whenanenvelopednanoparticlecomesinclosecontactwithanalreadydestabilizedmembrane,e.g.bycationiccharge,fusionbetweennanoparticleandendosomalmembranecanresultincargoreleaseinthecytosol.

Intracellulardeliveryofnanomaterials

[50]andmonensin[48].However,itisimportanttotakeintoaccountthatthesebufferingagentsmightenhanceendosomalescapeduetotheproton-spongeeffect,ratherthanblockitthroughinhibitingacidification.Therefore,itwouldmakemoresensetoblocktheacidificationprocessaltogether,whichisdonebytheadditionofionchannelinhibitors(ionophores)[51]ormoreimportantly,V-typeproton-pumpingATPaseinhibitorssuchasbafilomycinsorconcanamycins[52].

Assaysforstudyingporeformation

Poreformationcanbeinvestigatedbymeasuringtheleakageoftracercompoundsintotheextravesicularenvironment(seeTable1).Typically,thoughnotalways,thesetrac-ersarefluorescentmoleculesthatarequenchedinsidethevesiclesandbecome(more)fluorescentupontheirescape.Thisincreaseinfluorescenceintensitycanbemeasuredwithspectrofluorimetryinexcelluloassays,orwithfluo-rescencemicroscopyorflowcytometryincellularassays.Flowcytometryisconvenientinthatitcanprovideahigh-throughputquantificationofthefluorescenceintensitypercell.Fluorescencemicroscopyhaslowerthroughputbuthastheadvantageofprovidingadditionalinformationontheintracellularfluorescenceprofile(IFP).Apunctatefluores-cencepatternisoftenconsideredanindicationofthetracercompoundbeingentrappedinendosomes,whileadiffusecytosolicstainingimpliesleakagefromtheendosomalvesi-cles(Fig.3).Itmustbenotedhowever,thatsuchatracerleakageassaycannotdistinguishbetweenendosomalescapebyporeformation,orbybursting(seesection‘Assaysforstudyingmembranerupture’).

8-Aminonaphthalene-1,3,6-TrisulfonicAcid(ANTS)and8-Hydroxypyrene-1,3,6-TrisulfonicAcid(HPTS)arepolyan-ionicfluorescentmoleculesthatarequenchedbythecationicquencherp-Xylene-Bis-PyridiniumBromide(DPX).BothANTS/DPX[55]andHPTS/DPX[55,56]havebeenusedinexcelluloassaystoinvestigatethemembraneintegrityofartificialendosomes,whereleakageanddilutionofbothcompoundsresultsindequenchingofthefluorescentsignal.Fluorescein-labeledcell-penetratingpeptides(CPPs)havebeenusedinasimilarmannerwithpotassiumiodideasquencher[57].Otherwise,ratherthanusingaquenchermolecule,self-quenchingofcertainfluorophorescanbeachievedwhenusedatasufficientlyhighconcentration,whichisrelieveduponleakageresultinginincreasedfluo-rescence.Forinstance,calcein[58,59],carboxyfluorescein(CF)[45]andsulforhodamineB(SulfoB)[61]havebeenusedinexcelluloleakageassaystoinvestigatemembraneintegrityofartificialendosomesbyspectrofluorimetry.Incellularassays,thesetracermoleculesareloadedintheendosomesbyconstitutiveendocytosis.Especiallycalceinhasbeenusedforthis,sincetheacidicpHinendolysosomeswillfurtherquenchitsfluorescencesothattheincreaseinfluorescenceintensityafterleakageisevenmorepro-nounced.Scoringporeformationincellularassaysusingcalceinhasbeenachievedbothbymicroscopy[47,60]andflowcytometry[53].

Whereasanincreasedcalceinfluorescencedoesnotdisclosefromwhichintracellularvesicleleakageoccurred,theuseofothertracermoleculessuchasDQ-ovalbumin[38]andacridineorange(AO)[38,47,51]relatespecifically

349

toendolysosomalmembraneintegrity.DQ-ovalbuminisa45kDaproteintowhichahighnumberofBODIPY-FL(8-chloromethyl-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-sindacene)isconjugated,quenchingitsfluorescence.Beforethisproteinisproteolyticallyprocessedintopeptidesintheendolysosomalcompart-ment,poreformationwillleadtoreleaseofthequenchedDQ-ovalbuminprotein.However,afterproteolyticaldegra-dation,poreformationwillleadtoreleaseanddilutionofthequenchedBODIPY-FL-labeledpeptidesandanincreaseinfluorescence.

Anotherinterestingapproachtospecificallyinvestigatelysosomalintegritythatdoesnotinvolveadequenchingofhighlyconcentrateddye,reliesonacidotropicdyeslikeAOthataccumulateatahighconcentrationinthelysosomallumen,formingfluorescentdimersinacidicenvironments.Uponlysosomalmembranedamageitsflu-orescencedecreasesbecausethelysosomalacidicpHcannolongerbemaintainedincombinationwithAOleakingoutinthecytosol.Quantificationofthisdecreasedfluores-cenceisthenrelatedtodamagetothelysosomalmembrane[38,47,51].

Endosomalmembraneintegritycanalsobeevaluatedincellswithouttheuseoffluorescenttracers.Forinstance,theleakageofcertaintoxinsfromendosomesisknowntoinhibitproteinsynthesis.Insuchaway,Pseudomonasexo-toxin[62],ribotoxin␣-sarcin[63]andsaporin[64]wereusedastracermoleculestoinvestigatemembranedestabilizationbydifferentviruses.Theinfluenceonproteinsynthesiswasevaluatedeitherwithradio-activelylabeled[3H]-leucine[62]or[35S]-methionine[63],orbyusinganMTTassay[64].Thoughtheseassayswereusedinaviralsetting,theycouldeasilybeappliedforman-madematerialsaswell.

Asalreadyhighlighted,theleakageassayisfrequentlyusedtoevaluatetheeffectivenessofcertaincompoundstoinduceporeformation,suchasviralnanoparticles[61—64]andCPPs[53,55,57—59].Nonetheless,theseassayswerealsousedtoverifytheeffectivenessofpolymericgenedeliv-erycomplexes,composedofcationicpolymerssuchasPEI[51,60]orpoly(2-alkylacrylicacid)[47],andpDNA.Alimi-tationofdetectingleakageofsmallmolecules,however,isthatitmaynotdirectlyrelatetothereleaseoflargermacro-moleculesornanoparticles.Therefore,radioactivelabeledproteinswereusedinsteadofsmallmoleculetracersinanexcelluloassay,wheretheradioactivityofleakedproteinsintheextravesicularenvironmentwasvisualizedafteragarosegelelectrophoresis[58].Fluorescentdextransofvariousmolecularweightsareinterestingforuseincellularassaysaswellsincetheyareefficientlytakenupbycellswithoutspontaneousleakagefromtheendocyticvesicles,andtheycanbelabeledwithdifferentfluorophores[38,53,65].How-ever,asleakageofdextransintothecytosolwillnotleadtofluorescencedequenching,itrequiresvisualizationoftheIFPwithfluorescencemicroscopy.Ofcourse,todistinguishpunctatefromdiffusestaining,itisessentialthattheselargetracercompoundsarestillabletodiffusethroughoutthecytosol,whichcanbecheckede.g.bymicroinjection.

Assaysforstudyingmembranerupture

Asidefromporeformation,endosomalescapecanalsooccurthroughtheruptureorburstingoftheendosomal

Table1Overviewofthedifferentassaysusedtoinvestigateporeformationbyleakageoftracercompounds,withtheiruseincelluloorexcellulo.Mostassaysarebasedonfluorescence,thoughalternativesarealsolisted.

Tracercompound

Molecularweight

Excellulo/inQuenchingMeasurementtechniqueReferenceComments

cellulo

andresponse

Tracer+quencher

ANTSDPXSpectrofluorimetry[55]

2molecules427Da

Excellulo

necessary

Fluorescence↑HPTS

524Da

Excellulo

DPX

Spectrofluorimetry[55,56]2moleculesnecessary

Fluorescence↑Fluorescein-CPP

1.500—3.000DaExcellulo

KI(100mM)

Spectrofluorimetry[57]

2moleculesnecessary

Fluorescence↑

Self-quenchingCalcein

622Da

Excellulo

±100mM

Spectrofluorimetry[58,59]

Quenchingconcentrationtracer

Fluorescence↑

calcein

Incellulo

25␮M/3.2mM

IFP:diffuse<>punctate

[47,60]

Quenchingconcentrationcalcein

QuantificationpossibleIncellulo

250␮M

Flowcytometry

[53]Quenchingconcentrationcalcein

SulforhodamineB

559Da

Excellulo

100mM

Spectrofluorimetry[61]QuenchingconcentrationFluorescence↑SulfoB

Carboxyfluorescein

376Da

Excellulo

±50mM

Spectrofluorimetry[45]

QuenchingconcentrationFluorescence↑

CF

Lysosome-specificAcridineorange

302Da

Incellulo

Acidotropic

Flowcytometry[38,47,51]

Measuringdecreaseintracer

Fluorescence↓

fluorescence

ComparetonormalcellsDQ-ovalbumin

45.000Da

Incellulo

BeforeproteolyticalIFP:diffuse<>punctate

[38]Onlyfluorescenceafterprocessing

lysosomaldegradation

Reporterassays

Pseudomonas71.000Da

Incellulo

Onlyactiveincytosol

Proteinsynthesis↓[62]

Nohydrophobicexotoxin[3H]-leucine

fluorophores

Importanttonormalize␣-Sarcin

18.000Da

Incellulo

Onlyactiveincytosol

Proteinsynthesis↓[63]

Nohydrophobic[35S]-methionine

fluorophores

ImportanttonormalizeSaporin

30.000Da

Incellulo

Onlyactiveincytosol

Proteinsynthesis↓[64]

NohydrophobicMTTassay

fluorophores

Importanttonormalize

LargetracerProtein

20.000Da

Excellulo

Radio-activelabeling

Gelelectrophoresisand[58]

Nohydrophobiccompounds

radio-activityfluorophores

measurement

Relevantforcells?FluorescentDifferentsizes

Incellulo

IFP:diffuse<>punctate

[38,53,65]

Onlysmallerdextrans

dextrans

350T.F.Martensetal.Intracellulardeliveryofnanomaterials

351

Figure3(A)Theintracellularfluorescenceprofile(IFP)of3kDadextrans(greenfluorescence),illustratingthedifferencebetweenapunctatepattern(sequesteredcargo;left)anddiffusestaining(cytosoliccargo;right).Scalebar10␮m.Reprintedfrom[53],©2012,withpermissionfromElsevier.(B)IFPofQdots(greenfluorescence),visuallyclassifiedasapunctatepattern,moderatereleaseandahighamountofrelease.Bluecolorindicatesthenucleus.Scalebar50␮m.Reprintedwithpermissionfrom[54].©2013AmericanChemicalSociety.

vesicleswhenanalreadydestabilizedmembraneisper-turbedbyanoutwardforce,e.g.osmoticpressure(seesection‘‘Endosomalrupture’’).Theleakageassaysdis-cussedinsection‘Assaysforstudyingporeformation’canalsobeappliedheresinceruptureisalsoassociatedwithmembranedamage.However,theycannotdistinguishbetweenporeformationandrupture,seeingasthelatterisatransientevent.Instead,directvisualizationoftheburstingeventcanbeaccomplishedwithlive-cellvideomicroscopy.Forinstance,calceinreleasefromlight-responsivepoly-mersomesandendosomeswasimagedbyVasdekisandcolleaguesasaburstoffluorescencetowardthecytosol(Fig.4A),whichisindicativeofendosomalruptureratherthangradualleakageafterporeformation[35].LeakageoffluorescentdextransafterPCItreatmentwasvisual-izedinreal-timebyDeBruinandcoworkers,whonotedadisappearanceoftheamountoflabeledendosomes,indicatingfastreleaseofthecompounds(Fig.4B)[34].High-speedvideoacquisitionwasabletodocumentanasym-metricreleaseoftracermoleculesfromtheendosomes,representativeforaburst-likemechanism(Fig.4C).Fur-thermore,theauthorsinvestigatedreleasekineticsafterPCIofdifferentpDNA-polyplexescomposedofPEI,PLLandpoly-D-lysine(PDL),andnoticedadistinctinfluence

ofbufferingontheburstingeffect.Similarly,fluores-centlylabeledoligodeoxynucleotides(ODNs)wereusedasself-quenchingtracermoleculesforthevisualizationofPEI-inducedendosomalrupture[66].Withaspinningdiskconfocalmicroscope,thereleaseofODNswasclearlyvisibleasaburstoffluorescencefillingthecytosol,followedbyanaccumulationoffluorescentODNsinthenucleus(Fig.4D).ThesemeasurementsareaparticularlyniceconfirmationoftheprotonspongehypothesisofbufferingcationicpolymerslikePEI.

Thoughithasnotbeenprovenexplicitly,onecouldarguethatwhenvisualizingendosomalruptureofsmalltracermolecules,theco-incubationofsmalltracermoleculesmightaltertheactualosmoticpressurewithinendosomes,leadingtoaburstingeventwheretherenormallyisnotone.AnalternativeruptureassaynottroubledbythislimitationisproposedbyMaierandcolleagues[67],makinguseofacelllinestablyexpressingthelectingalectin-3(Gal-3)fusedtoanmCherryfluorophore.Gal-3bindsgalactoseresidues,whichunderphysiologicalconditionsarepresentexclusivelyontheextracellularorintraluminaldomainsofmembraneglycoproteins.Usinglive-cellvideomicroscopytheycoulddetectmembranerupturebyviralnanoparticlesinreal-timebasedontheaccumulationofcytosolicmCherry-Gal-3on

352

T.F.Martensetal.

Figure4Examplesofthevisualizationofendosomalrupturebyvideomicroscopy.(A)Light-inducedreleaseofcalceininmacrophagesbyburstingoftheendosomes,whichisnoticeableasaburstofcalceinfluorescenceinthecytosol.Reprintedwithpermissionfrom[35],©2012AmericanChemicalSociety.(B)Afastdecreaseintheamountofdextran-filledendosomesisseen,togetherwithanincreaseincytoplasmicfluorescence,indicativeofendosomalbursting.Scalebar5␮m.Reprintedwithpermissionfrom[34],©2008,withpermissionfromElsevier.(C)High-speedvideomicroscopyshowstheasymmetricreleaseofdextransfromanendosome,indicativeofbursting.Scalebar2␮m.Reprintedwithpermissionfrom[34],©2008,withpermissionfromElsevier.(D)Real-timevisualizationofendosomalescapeoffluorescentlylabeledoligodeoxynucleotides(FITC-ODNs).AsuddenreleaseofquenchedFITC-ODNscanbeseenasaburstofgreenfluorescence,accumulatingquicklyinthenucleusafterendosomalrelease.Reprintedwithpermissionfrom[66],©2013AmericanChemicalSociety.

intraluminalgalactoseresiduesinrupturedendosomalstruc-tures.Eventhoughthisassaywascoinedinaviralsetting,theauthorsconfirmedthatthiswasonlypossibleincaseoffullydisruptedmembranes,andnotincaseofporeforma-tion,extendingtheusefulnessofthisassaytoallkindsofman-madenanomaterials.

Assaysforstudyingmembranefusion

Whennanomaterialsaredeliveredbyenvelopednanopar-ticles,e.g.liposomalformulations,endosomalescapeishypothesizedtooccurviafusionwiththeendosomalmem-brane.Thefusionoflipidbilayersisusuallyassayedbyadyedilutionassay,wherefluorescentmarkersaredilutedoveranincreasedsurfacearea(Table2).Thiswillresultinachangeinfluorescenceintensity,whichcanbemonitoredwithfluorescencetechniquessuchasspectrofluorimetryorfluorescencemicroscopy.Asacontrol,lipidmembranesaretypicallylysedbyadetergentforcompletedilutionofthe

fluorophores.Thefluorophoresusedareeitherlipophilicinnatureorcoupledtolipidcompoundssuchasphos-phatidylethanolamine(PE),sothattheycanbeefficientlyincorporatedinthelipidbilayer.

Forexample,whenpyreneisloadedintoalipidmem-braneinasufficientlyhighconcentration,excitablepyrenedimers,or‘‘excimers’’willbeformed.However,upondyedilutionoveralargersurfacearea,thesedimerswillbreakapart,leadingtoalossinfluorescence[59].AmorefrequentlyusedtechniquetomonitorfluorophoredilutionisFörsterresonanceenergytransfer(FRET).FRETisadistance-dependentinteractionbetweenapairoffluorophores,adonor(D)andacceptor(A),iftheemis-sionspectrumofthedonorfluorophoreoverlapswiththeexcitationspectrumoftheacceptorfluorophore.Ifbothfluorophoresareincloseproximity,typically1—10nm,theexciteddonorfluorophorecan(non-radiatively)transferitsenergytotheacceptorfluorophore.Thisresultsinanincreaseofacceptorfluorescenceattheexpenseof

Intracellulardeliveryofnanomaterials

353

Table2Successfullipid—lipidfusionleadstoadilutionoftheincorporatedfluorophoresoveralargersurfacearea.Dyedilutioncanbedetectedinanumberofways:dimerquenching,resultinginlossoffluorescence;FRET,resultinginashiftinfluorescenceratiooftwofluorophores;dyedequenching,resultinginanincreaseinfluorescenceduetodequenchingofaself-quenchingfluorophore.

Dimerquenching

PyrPC

󰀁exc=345nm;󰀁em=480nm

Excellulo

[59]

FRET

NBD(D)

󰀁exc=465nm;󰀁em=535nmRhodamine(A)󰀁exc=545nm;󰀁em=576nm

Excellulo

[17,44]

Incellulo

[68]

Dyedequenching

Rhodamine󰀁exc=545nm;󰀁em=576nmDiD

󰀁exc=633nm;󰀁em=650nmLPDiI

󰀁exc=549nm;󰀁em=565nm

Excellulo

[55]

Incellulo

[69,70]

Incellulo

[71]

FRET=Försterresonanceenergytransfer;F=fluorophore;D=donor;A=acceptor;NBD=4-chloro-7-nitrobenz-2-oxa-1,3-diazole;PE=phoshpatidylethanolamine;DiD=1,1󰀅-dioctadecyl-3,3,3󰀅,3󰀅-tetramethylindodicarbocyanine;DiI=1,1󰀅-dioctadecyl-3,3,3󰀅,3󰀅-tetramethylindocarbocyanine;PyrPC=1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphocholine.

donorfluorescence[44].AfrequentlyusedFRETpairisNBD(4-chloro-7-nitrobenz-2-oxa-1,3-diazole)asadonorandrhodamineasanacceptordye[17,44,68].Liposomalpar-ticlesaredouble-labeledinahighconcentrationsothatthedistancebetweendonorandacceptorallowFRET.Uponsuccessfullipidfusionhowever,bothfluorophoreswillbedilutedoveralargersurfaceareaandthedistancebetweendonorandacceptorwillincrease,resultinginadecreasedFRETefficiency.Inanexcellulosetting,thisdouble-labelingcanbeappliedtoeithertheliposomalvector[17]orthearti-ficialendosome[44],andFRETefficiencycanbemonitoredbyspectrofluorimetry.FREThasbeenusedincellularexper-imentsaswell,wherethedonorandacceptorfluorophoresareincorporatedinthelipidenvelopofthenanoparticulatecargoandFRETefficiencyismonitoredbylivecellspectralimagingmicroscopy[68].Athirdalternativefordyedilu-tionreliesontheself-quenchingcharacteristicsofspecificfluorophoreswhentheyareloadedaboveacertainconcen-trationinalipidmembrane.Uponfusion,thefluorophores

aredilutedbelowtheirself-quenchingconcentrationandtheincreaseinfluorescenceintensitycanbemonitored[55,69—71].

Fluorophoredilutioninlipidmembranesisfrequentlyusedtoinvestigatemembranefusion,eitherinducedbyCPPs[55,59,68],viralnanoparticles[69—71]orliposomaldeliv-eryvectorsofproteins[17]orpDNA[44,68].Nevertheless,itshouldbeemphasizedthatthemajorlimitationofthisassayistheinabilitytodistinguishbetweenlipidfusionandlipidmixing(Fig.5A)[72].Whereasbothfusionandmixingdenotestheinteractionbetweenlipidbilayersandwillleadtodilutionoftheincorporatedfluorophoresoveralargersurfacearea,lipidmixingwillnotresultintheintendeddis-placementofthecargo.Therefore,complementaryassayshavetobeincludedtodistinguishlipidmixingfromlipidfusion.Asanadditionalconfirmationinanexcelluloassay,itwassuggestedtomeasurethehydrodynamicsizebydynamiclightscattering.Iffusionoflipidnanoparticlesandarti-ficialendosomesoccurs,thisshouldleadtoanincrease

354

T.F.Martensetal.

Figure5Combiningmembranedyedilutionandcontenttransferassaystoverifylipidfusion.(A)Asinglecolormembranedyedilutionassay(1)cannotdistinguishbetweenlipidmixingandlipidfusion,astheincreaseinredfluorescenceresultingfromdequenchingafterdyedilutioncouldbeattributedtobothcases.Acontenttransferassay(2)canbeusedasacomplementaryassay,wherefluorescenceofthecontentmarkerwillbelostupondilutiononlyaftermembranefusion.Bothassayscanbecombinedwhenusingtwo-colorfluorescencemicroscopy(3),whereasub-resolutionparticlewillappeargreen,yelloworred,dependingonwhetherthereisnointeraction,lipidmixingorlipidmembranefusionrespectively.(B)Byusingtwocolorfluorescencemicroscopy,Miyauchiandcolleaguesproposedanassaytodistinguishlipidmixingfromlipidfusionattheplasmamembraneandinendosomes.Labelingboththeenvelopewithamembranemarker(redfluorescent)andthecorewithsolubleNC-GFP(greenfluorescent),theviralparticlesoutsideofthecellsandinsideoftheendosomeswillemitfluorescencefrombothfluorophores(appearingyellow).Lipidmixingattheplasmamembranewillresultinalmostinfinitedilutionoftheredlabelandlossoftheredsignal.Sincelipidmixingdoesnotresultincargodisplacement,thegreencontentsignalisstillvisible.Lipidmixingwiththeendosomalmembraneontheotherhandwillstillresultinthepresenceofyellowparticlesintheimage,astheredmembranemarkerwillstillemitfluorescenceafternegligibledilutioninthefiniteendosomalmembrane,andthecontentsignalwillalsoremainthesame.Whenlipidfusionoccurshowever,eitherattheplasmaorendosomalmembrane,thecontentmarkersignalwillbelostduetoinfinitedilutioninthecellcytoplasm.Fusionattheplasmamembrane,therefore,willresultinlossofbothsignals,whereasfusionwiththeendosomalmembranecanbeascertainedbylossofgreenfluorescenceandemissionofredfluorescencefromtheendosomalmembrane.Adaptedfrom[69],©2009,withpermissionfromElsevier.

Intracellulardeliveryofnanomaterials

inaverageparticlesize[44].Alternatively,contenttrans-ferfromtheenvelopednanoparticlehasalsobeenusedtoprovefusioninsteadofmixing(Fig.5A).Forinstance,thetransferoffluorescentlylabeledODNstogiantunilamel-larvesicleswasvisualizedbyfluorescencemicroscopy[73],thoughthisassaylackedhigh-throughput.Contentdisplace-mentoftracercompoundshasalsobeenemployedtoverifylipidfusion,bothtowardartificialendosomesexcellulo[59],andtothecytosolincellulo[69].However,suchcon-tentdisplacementcouldbeanindicationofbothmembranefusionandporeformation[72].Therefore,bothcontentdis-placementanddyedilutionassaysshouldbecombinedtoascertainlipidfusion.Miyauchiandcoworkersproposedsuchacombinationofdyedilutionandcontenttransferassays,whereadual-colorfluorescencelabelingofanenvelopedviruscoulddistinguishlipidfusionfromlipidmixingattheplasmamembraneortheendosomes[69](Fig.5B).Thoughthisassaywasusedinaviralsetting,thesametechniquecouldbeappliedtoman-madeenvelopednanoparticles.Basically,boththecontentandtheenvelopearelabeledinfluorophoreswithdifferentspectra(greenandred,respec-tively)resultinginayellowsignalwhentheviralparticleisintactoutsideofthecellorinsideoftheendosome.Toascer-tainiftheparticleinteractswiththeplasmamembraneortheendosomalmembrane,thedilutionofthemembranedyewillleadtocompletelossoftheredsignalwheninfinitelydilutedovertheplasmamembrane,orthesignalwillstillbevisiblewhendilutedoverthesmaller,finitesurfaceoftheendosomes.Nevertheless,thisdyedilutionassay,thoughinformativeaboutwhereinteractionoccurs,doesnotdistin-guishlipidmixingfromlipidfusion.Thefluorescentcontentmarkerisincorporatedtothisend,asalossofitsfluores-cenceindicatesfusioninsteadofmixing,regardlessofthelocation.

Biologicallyrelevantartificialmembranes

Artificialmembranesmimickingtheendosomalmembranearefrequentlyusedinexcelluloassaystoevaluateendo-somalescapeinacontrolledenvironment.ThemajorconstituentsoftheendosomalmembranearePC(phos-phatidylcholine),PEandPS(phosphatidylserine),thatarepresentataratioof55%,25%and10%oftotallipidcontent,respectively[73,74].AlthoughoftenartificialmembranesaresimplifiedversionsconsistingonlyofPCandsome-timescholesterol,moreandmorestudiestrytomimictheendosomalmembraneasaccuratelyaspossible[44].TheimportanceoflipidcompositiononmembraneinteractionswasprovenforexampleinastudybyBerezhnaandcowork-ers[73].Lipidfusionwasevaluatedbetweenlipoplexesandgiantunilamellarvesicles(GUVs)consistingofdifferentcompositionsofPC,PE,PSandsphingomyelin(SM).Remark-ably,theauthorsfindthatfusionofthecationiclipoplexeswiththeartificialmembraneandsubsequentreleaseofnucleicacidsispredominantlymediatedbythenegativelychargedPSandPE,whilePCandSMaresupposedlyinertinthisprocess.Similarly,astudybyYangetal.[55]showedthatTAT-mediatedfusionwasdependentontheanioniclipidbis(monoacylglycero)phosphate(BMP),highlyenrichedintheintraluminalvesiclesoflateendosomes.Thus,thesestudiesclearlyshowthatthelipidcompositionofthe

355

artificialmembraneusedintheexcelluloassayisofutmostimportance.

AnotherkeyaspectofendosomesistheshiftinpHcom-paredtotheextravesicularenvironment.Torecreatetheendosomalacidicenvironment,abufferwithsimilarpHcanusedtoresuspendtheartificialendosomes[26].AdifferentapproachbyMadanietal.involvespreparingartificiallargeunilamellarvesicles(LUVs)withbacteriorhodopsin(BR)inte-gratedinthelipidlayer.Uponillumination,BRwillactasaproton-pumpingV-typeATPase,henceacidifyingtheLUV’sinteriorandmimickingthelateendosomalenvironmentinacontrolledmanner[57].

Nevertheless,liposomeswillalwaysbeasimplificationofactualendosomalmembranes,giventhelackofproteinsandlipidasymmetry[75].Inanattempttoinvestigateinter-actionswithanartificialendosomalmembranewithashighabiologicalrelevanceaspossible,redbloodcells(RBCs)havebeenfrequentlyusedasamodel.Adyedequench-ingassaywithRBCsasamodelmembranehasbeenusedbyLakadamyalietal.[70]tostudyfusioninaviralcon-text.Similartoleakageassays,RBCintegrityisfrequentlyemployedtoevaluateporeformationbyendosomalescapeenhancingcompounds,suchasCPPs[26],PEI[46]orotherdrugdeliveryvectors[47,56,76].DamagetotheRBCmem-branewillleadtoleakageofhemoglobin,whichcanbequantifiedbyabsorptionmeasurementsat450nmafterremovalofintacterythrocytes.Anevenmorerepresen-tativemodelmembranewasusedinaleakageassaybyPrchlaetal.[77].HeLacellswerepreviouslyloadedwithahighconcentrationofbiotin-dextrans,afterwhichendo-someswereisolatedfromthecells.Afterwards,leakageofbiotin-dextransexcellulocouldbedetectedintheextrav-esicularenvironmentwithanELISAassay.Interestingly,LeBlancandcoworkersadoptedasimilarmethod[71],thoughelaboratedbyincubatingthepre-loadedisolatedendosomesinacytosol-mimickingsolutioncontainingbuffersandATPforcontinuousacidificationofthepurifiedlateendosomes.Thoughthisassaywasusedinaviralsetting,themimickingofthecytosolicenvironmentcanbeextrapolatedforuseinanyexcelluloassay.

Studyingendosomalescapeefficiency

Ofevengreaterpracticalusethanelucidatingthemecha-nismofendosomalescape,isdeterminingifandtowhichextentendosomalescapeoccurs.Insteadofinvestigatingthemembraneintegrityorfusion,these(mostlycellu-lar)assaysactuallymonitortheamountofcytosoliccargo.Therefore,theseassaysarenotinfluencedasmuchbythetypeofdeliveryvectorastheyarebythetypeofcargo.Inthissectionanoverviewisprovidedofthedifferentmethodsthathavebeenreportedtodeterminesuccessfulcytosolicdeliveryofnanoparticulatecargo(Table3).

Biologicalactivity

Whentheaimistodeliverbiologicallyactivemolecules,e.g.therapeuticmoleculesindrugdelivery,successfulcytosolicdeliverycanbeeasilyassessedbythebiologicalactivity.Forinstanceincaseofgenetherapy,amodelmRNAorpDNAisusedencodingforareporterproteinsuchasluciferase

Table3

Overviewofdifferenttechniquesusedtomonitorcargodisplacementtothecytosol.

DistinguishcytosolicMeasuringtechniqueUse

Reference

Pro’s

Con’s

fractionfrom

sequesteredfraction

BiologicalactivityinReversetranscriptase-Knockdownofreporter[80]

-Invivomeasurements-Indirectmeasurecytosol

quantitativePCR

orhouse-keepinggene-Easyhigh-throughput-Fixedendtime-pointbysiRNA

quantification

-LimitedtosiRNASpectro/luminometer

-Expressionor

[46,79]

-Applicabletodifferentcargo-Indirectmeasureknockdownofreporter-Easyread-out

-Populationaveragegene

-Easyhigh-throughput-Fixedendtime-point

-Enzymeactivity[81]quantification

Flowcytometry

-Expressionor

[78]

-Applicabletodifferentcargo-Indirectmeasureknockdownofreporter-Fastandeasyread-out-Fixedendtime-point

gene

-Easyhigh-throughputquantification

-Single-cellmeasurementsELISA

-DetectionofIL-2[17]

-Live-cellmeasurement-Indirectmeasure

secretionasantigen-Easyhigh-throughput-LimitedtoantigendeliverytoAPCs

presentationassayquantification

Immunofluorescence-Immunostainingof[35]

-Easyhigh-throughput-Indirectmeasure

microscopy

SIINFEKLasantigenquantification

-LimitedtoantigendeliverytoAPCspresentationassay

-Fixedendtime-point

Cellularfractionation

QuantitativePCR

-AmountofDNA

[82,83]

-Cytosol<>endosomes-Labor-intensivecellular-Easyhigh-throughputfractionation

quantification

-Carrier-boundDNA?-Invivomeasurements-Fixedendtime-pointStem-loopPCR

-Amountofbiologically[84]

-Cytosol<>endosomes-Labor-intensivecellularactivesiRNAboundto-Easyhigh-throughputfractionation

RISC

quantification

-Immunoprecipitationstepnecessary-Invivomeasurements-Fixedendtime-point-Onlyactivecargo

-LimitedtosiRNA

Radio-activity

-AmountofDNA[50]-Cytosol<>endosomes-Labor-intensivecellularfractionation

-Amountofproteins

[86]-Easyhigh-throughputquantification

Intracellular

Wide-fieldepi-fluorescenceor-Visualscoring[53,65,81]-InCytosolvivomeasurements<>endosomes-Limitedtosmallcargofluorescenceprofile

confocalmicroscopy

-Quantification

[47,87,88]

-Easyread-out-Difficultquantification-Specificlabeling

-Fluorescentlabeling

356T.F.Martensetal.Table3(Continued)

Distinguishcytosolic

MeasuringtechniqueUse

ReferencePro’sCon’s

fractionfrom

sequesteredfraction

Fluorescent

Fluorescence-Measurereductive[89]

-Easyread-out-Indirectmeasure

microenvironmentmicroscopy

environment

-Specificlabeling

-Standardcurvenecessarysensors

-Measuredifferencein[26,51,71,90—92]-Livecells-NoquantificationpH

-Fluorescentlabeling

Real-timevisualizationLive-cell-videoVisualizeburstingof[66,84,93]

-Cytosol<>endosomes-Limitedtosmallcargoofendosomalescape

microscopy

endosomes

-Mechanismof-Lowthroughputendosomalescapequantification

--Livecells

-Fluorescentlabeling

Visualizefusionwith[69—71]endosomes-Specificlabeling

ColocalizationConfocalmicroscopy

-Visualscoring

[10,96—98]-Cytosol<>endosomes-Difficultquantification-Easyread-out-Fluorescentlabeling

-[51,79,82,100]

Quantification

-Specificlabeling-Limitedtemporalresolution-Allcargo

-

Fixationsometimesnecessary

Visualassessment

Electronmicroscopy

-Visualscoring

[14,49,54,84,-Veryhighresolution-Fixationartifacts

105,108,109]-Labelingnotalwaysnecessary-Lowthroughputquantification

Intracellulardeliveryofnanomaterials357358

[46]oreGFP[78].Theextentofreporterproteinexpres-sionisthenameasureforsuccessfuldeliverytothecytosolformRNAandfurthertothenucleusinthecaseofpDNA,whichonlycouldhavehappenedifendosomalescapehasoccurred.ForsiRNA,amutantcelllinecanbeusedthat(stably)expressesareporterprotein.TheextenttowhichthedeliveredsiRNAsilencesthereporterproteinexpressionisthenagainameasureforsuccessfulcytosolicdeliveryofsiRNA[79].Alternatively,knockdownofahousekeepinggenecanbequantifiedbyRT-PCR[80].Forproteindelivery,onecanmakeuseofmodelenzymes,suchasthe␤-galactosidaseenzyme,whosebiologicalactivitycanbemeasuredastheintensityofbluecoloraftercleavageofX-Galsubstrate[81].Whendealingwithantigendelivery,theuniquepropertiesofAPCsallowdifferentantigenpresentationassaysasbio-logicalread-out.Whenusingovalbumin(OVA)asamodelantigenicprotein,theextentofOVA-deliverytoAPCscanberelatedtoeithertheproliferationofandIL-2secretionbyOVA-peptidespecificCD8+T-cells[17],ortotheamountofMHC-IdependentSIINFEKLpresentationbyAPCsasmea-suredbyimmunohistochemicalanalysis[35].

Itisclearthatthenanomaterialsinvestigatedwiththeseassaysshouldconsistofcargowithbiologicalactivity(suchaspDNA,siRNAorproteins),regardlessofwhetherthiscargoisdeliveredbyliposomes[17],polymersomes[35]orcationicpolymerssuchasPEI[46]orchitosan[78].Itmustbenotedhoweverthatthebiologicalactivityisusuallytheend-pointofanintracellularcascade,fromwhichendosomalescapeisonlyoneaspect.Nanoparticleuptake,dissociationofthecargofromitscarrier,cytosolictranslocationtothenucleus(forpDNA),transcription,translation,etc.canallinfluencethefinaloutcome.Therefore,thebiologicalassaysareonlyanindirectmeasureforendosomalescape,warrantingtheuseofothermorespecificassays,asdescribedfurtheron.

Cellularfractionation

Todistinguishnanoparticulatecargointhecytosolfromthatsequesteredintheendolysosomalcompartment,afre-quentlyusedassayinvolvesfractionationofthecellsandmeasuringthecargointhecytosolicandendosomalfractionswithinvitroassays.Forexample,theamountofnucleicacids[82,83]incytosolandendosomeswasquantifiedwithquantitativePCRafterfractionation.TomeasuretheamountofbiologicallyactivesiRNAinthecytosol,theAgo-proteinoftheRISC-complexwasimmunoprecipitatedfromtissuelysates,followedbystem-loopPCRquantificationoftheamountoftargetsiRNApresentintheRISC-complex[84].InsteadofPCRquantification,itisalsopossibletousefluorescentlylabeledcargoandquantifythefluorescenceindifferentcellularfractions/compartments.Forexam-ple,fluorescentlylabeleddextransandPEG-particleshavebeenquantifiedthiswayaftercellularfractionation[85].Radio-activelabelinghasbeenusedforbothpDNA[50]andproteins[86]aswell.Itwasevenshownthatradio-activelabeledproteinscanbequantifiedincellularfractionsfromtissuelysatesafterinvivoadministration[86].

Wewouldliketohighlightthatforinvestigatingendo-somalescape,cellularfractionationismerelyameansofdistinguishingcytosolicfromendosomalcargo,andshouldalwaysbecomplementedwithinvitroassaystomeasure

T.F.Martensetal.

toamountofcargoineachfraction.Thoughthenanoma-terialswhichcanbeinvestigatedbythisendosomalescapeassayarethereforeonlylimitedtowhetherthecargocanbemeasuredornot,typicalconcernsaboutcellularfrac-tionationarethelabor-intensivenessoftheassay,aswellastheuncertaintyofcollectingallthefractionswhilstavoid-ingcontaminationfromtheendolysosomalfractioninthecytosolicfraction[83].Also,questionshavebeenraisedaboutthefractionationprocess,whereuptakeofmacro-moleculesornanomaterialsmightalterthevesiclebuoyantdensityandthereforenecessitateanadaptedpurificationprotocolforeachnanoparticle[85].Thereforeitseemsadvisabletoconfirmfindingsbythecellularfractionationassaywithotherassays,astheonesdescribedbelow.

Fluorescencemicroscopy

Sincemostnanoparticlesforintracellulardeliverycanbefluorescentlylabeled,orinsomecaseshaveintrinsicfluo-rescentproperties,themostfrequentlyusedtechniquefordiscriminatingcytosolicfromendosomalcargoisviafluores-cencemicroscopy.Giventhatthecargoissmallenoughsoitcandiffusethroughoutthecytosol,adiffuseorpunctateIFPcanberelatedtotheefficiencyofendosomalescape(cfr.section‘Assaysforstudyingporeformation’).Thishasbeenusedtoassessendosomalescapeofpeptides[53,65],siRNA[87],Qdots[8]andsmallerproteins[47,88].Inmoststud-ies,thediffuseorpunctatefluorescencepatternisscoredvisually,sothattheseexperimentsremainratherqualitative[53,65,81].Yet,insomestudiesitwasattemptedtoquantifytheIFP.Forexample,themedianfluorescencevalueofcom-pleteconfocalimageswasproposedasasimpleparametertodistinguishapunctatepatternfromadiffuseintracellu-lardistribution[88].Alternatively,theaveragefluorescenceintensityinregionsofinterestbelongingtothediffuseandpunctatestainingcanbequantifiedandcompared[47,87].Fluorescentprobeshavealsobeenusedinadifferentapproachtosenseachangeinthenanoparticlemicroen-vironment.Forexample,byattachingaquencherviaadisulfidebondtofluorescentlytaggedproteins,transfertothecytosoloftheseproteinstriggeredanincreaseinfluores-cenceduetoreductionofthedisulfidebondsbycytosolicglutathioneandreleaseofthisquencher[89].Otherwise,thechangeinmicroenvironmentpHbetweenacidicendo-somesandcytosolhasbeensensedbyusingfluorophoreswithapH-dependentfluorescenceemission[71,90].Thesefluorophorescanbeeitherattachedtothenanoparticle,orbeusedasananosensoritself.ToincreasesensitivitytoabroaderpHrange,thesesensorsaremadeofapH-independentreferencefluorophoreandone[26,51,91]ortwo[92]dyeswhoseemissionsareaffecteddifferentlybythepH.Theseratiometricfluorescentsensorshavebeenemployedonseveraloccasions,andmorespecificallytoinvestigatetheendosomalescapeofprotonsponge-basedPEI-deliveryvectors[51,91,92].Nevertheless,whenusingsuchnanosensors,itshouldbenotedthatastandardcurveisalwaysrequiredtorelatefluorescenceemissionratiotopH(Fig.6A).ThepHobtainedbythesenanosensorscanthenbevisualizedintheacquiredimagesbymeansofcolor-coding,asdemonstratedinFig.6B.

Intracellulardeliveryofnanomaterials

Figure6(A)Exampleofastandardcurveobtainedinvitro,wherefluorescenceemissionintensityratioisrelatedtopHofbuffersandfittedtoatheoreticalmodel.(B)Colorcodedmicro-scopicimageoftheintracellularpHfollowingincubationwithathree-fluorophorenanosensor.Thetoprowshowstheimagesasacquiredbyfluorescencemicroscopy,whilethebottomrowarecolorcodedimagesaccordingtothepHstandardcurveinA.Scalebar10␮m.N=nucleus.ReprintedbypermissionfromMacmillanPublishersLtd:MolecularTherapy[92],©2012.

Endosomalescapecanalsobeinvestigatedbylive-cellvideomicroscopy.Forinstance,thetransferofsmallnanoparticulatecargosuchasODNs[66],ribozymes[93]andsiRNA[84]towardthecytosolbyPEI-mediatedendosomalrupturewasvisualizedbyvideomicroscopyasaburstofflu-orescencefromtheendosomestothecytosol.ThereleaseofpDNA,however,cannotbedirectlyvisualizedsinceithasverylimitedmobilityinthecytoplasm[34,66].Thesamealsoappliestoaggregatesofcargodeliveredtothecytosol,ashasbeenobservedforQdotsdeliveredbylipofectamine,polymers,CPPsandphysicaltechniquessuchaselectropora-tion[9,94].ThisproblemwascircumventedbyRehmanandcolleagues,whopreparedPEI-pDNAcomplexescontaininginadditionself-quenchedfluorescentlylabeledODNsastracercompounds[66].Thisallowedtodetectburstingofendo-somesbydequenchingofthesmallODNs,inasimilarwayascalceincouldbeused.Interestingly,inthiswaytheycouldactuallycountthenumberofendosomalescapeeventspercell.Furthermore,byvisualizingtherateofODNaccumu-lationinthenucleus(Fig.4D),theycouldconfirmthatPEIinducessuddenendosomalburstingandimmediaterelease

359

ofcargointhecytosol,whileamoregradualleakageofODNswasobservedwhenlipidcarrierswereused.Likewise,Remautetal.madeuseofFRET-ODNsthatcouldestimateboththecytosolicdeliveryoftheODNsbasedonthenuclearaccumulation,andtheintegrityofthedeliveredODNsbasedontheFRETsignal[95].Itwasfoundthatthecompositionofthepoly-beta-aminoestercarriercangreatlyinfluencetheamountandintegrityofODNsthataredeliveredtothecytosol.

Dual-colorfluorescencemicroscopyandcolocalizationanalysisiswidelyusedtodistinguishcytosolicnanoparticlesfromthosethatarestillsequesteredintheendolysosomalcompartments,especiallythosetoolargetodiffusethrough-outthecytosol,suchaspDNApolyplexesandlipoplexes.Often,(thelackof)colocalizationbetweennanoparticlesandendosomesisregardedasameasureforendosomalescape.Althoughcolocalizationisfrequentlyvisuallyscored[10,96—98],itcanbeverywellquantifiedbydifferentapproaches[99].Themostrudimentarywayistoquantifycolocalizationonaper-pixelbasis,wherethepercentageofoverlappingpixelsinbothchannelsistakenasameasureforcolocalization[79,82].OtherfrequentlyusedparameterstoquantifycolocalizationbetweenpixelsarethePearson’s[100]andManders’correlationcoefficient[51].Inourgroup,wehaverecentlyoptimizedadual-colordynamiccolocal-izationtechnique,whichallowsquantifyingtheamountofcolocalizationbetweentwofluorescentlabelsbasedontheirmovementduringacertaintimeframe,inthiscasethecolocalizationbetweenlabeledendosomesandlabeledpDNA-polyplexes[101,102].Intheory,thismethodshouldalsobecapableofdetectingcorrelatedtrajectorieswhichdivergeovertime,ascouldbethecaseforendosomesandtheirreleasedmacromolecularcargo.

Giventhewidespreaduseoffluorescencemicroscopyandcolocalizationanalysisforassayingendosomalescape,itisinstructivetohighlightsomeofthewell-acknowledgedtechnicalchallengesandlimitationsofthetechnique[103].Firstly,duetothelimitedopticalresolutionofthemicro-scope,careshouldbetakenwhenevaluatingdiffusevs.punctatestaining,asout-of-focuslightmightfalselygivetheimpressionofadiffusestainingorapparentcolocalizedpixels.Furthermore,sub-resolutionobjectsthatarelocatedclosertogetherthanthemicroscope’sresolutionwillalwaysappeartobecolocalized,whichcanbeespeciallyprob-lematicintheperinuclearregionthattypicallycontainsahighdensityofendosomes.Confocalmicroscopycertainlyispreferredoverwidefieldepi-fluorescencemicroscopyasiteliminatesout-of-focusfluorescencetoalargeextent.How-ever,duetoarelativelylowsensitivity,confocalmicroscopycaneasilymissdimfeatureslikesmallendosomesandnanoparticles.Thiscanbemitigatedtosomeextentbyusingslowscanningspeedstocollectmorephotons,ifthefluores-centmoleculesdonotbleachtooquickly.Anotherfrequentlyencounteredproblemiscrosstalkofdifferentfluorophoresbetweendetectionchannelswhichagainmayleadtofalsecolocalization.Thiscanbelimitedbyrecordingeachchan-nelseparatelywithsequentialexcitationofeachofthedifferentfluorophores[100],thoughthegeneralguidelineistousefluorophoresthathaveaminimalspectralover-lap.Nevertheless,confocalmicroscopyisusuallyassociatedwithpoortemporalresolutionandhencetheneedforfixa-tion,whichimportantlyhasbeenshowntoleadtoartifacts

360

concerningtheendosomalsequestration[54,104].Nonethe-less,fastconfocalimageacquisitioninlivecellsisnowmadepossibleusingspinningdiskconfocalmicroscopesequippedwiththenewestgenerationofsensitiveCCDcameras,liketheelectron-multiplyingCCDsorscientificCMOScameras[66,84].

Ofequalimportanceforproperfluorescencemicroscopyisthechoiceoffluorescentendosomalmarkers.Dex-trans[97]ortransferrins[54]thatareaddedtothecellmediumareconsideredtobeanon-specificendo-somelabelingmethod.Alternatively,onecanpulse-chaselipophiliccarbocyaninedyesintheplasmamembrane[10]oruseplasma-membranespecificdyessuchasPKH67[68],whichwillendupinmostendocyticvesicles.Ontheotherhand,specificlabelingoflysosomescanbeattainedbyusinglysosome-specificmarkerssuchaslysosomal-associatedmembraneprotein1(LAMP1),forexamplebyimmunofluorescencestainingagainstLAMP1[87]ortrans-geneexpressionofaneGFP-LAMP1-construct[101].AlsoacidotropicdyescanbeusedsuchasLysotrackerBlue[9,93],LysotrackerGreen[79,80],LysotrackerRed[17,96]andLysoSensorGreen[100],whichhavebeenshowntolabelabout70%oftheintracellularvesicles[82].Onacau-tionarynote,itisimportanttokeepinmindthatmostacidotropicdyesareconsideredweakbasesandmightinflu-enceendosomalacidificationafterlongincubationtimes.Therefore,itisrecommendedtofollowthemanufacturer’sinstructions.Furthermore,combiningacidotropicdyeswith‘‘protonsponge’’-nanoparticlesforparticle-lysosomecolo-calizationhasbeenshowntoinfluencetheoutcome[105].Indeed,thoughPEI-particlesshowedalackofcolocalizationwithanacidotropicdye,colocalizationwasinfactnoticedwithfluorescentlylabeledLAMP1.ThiswasattributedtothefactthatPEIhasabufferingeffectontheendolysosomes,therebyinhibitingstainingbyacidotropicdyes,aconclusionthatisalsoconfirmedbyMoandcoworkers[98].

Regardinglabelingofthenanoparticleofinterest,onehasthechoiceofeitherlabelingthecarriermoleculesorthecargo.Ontheonehanditcanbearguedthatitisbesttolabelthecargosinceitwilltypicallybeincorporatedintothecarrierandhavetheleastinfluenceonuptakeandintra-cellularprocessingofthenanoparticle.Also,labelingthecarriermightgiverisetofalseconclusions,seeingascarrierdissociationisshowntoalreadyoccurintheendosomesforPEI[66].Ontheotherhand,fluorescentlabelsaretypicallyhydrophobicandmightinteractwiththeendosomalmem-braneandinfluencethedisplacement[66,106].Aconsensusonthishasnotbeenreached,however,warrantingfurtherstudiesonthistopic.

Electronmicroscopy

Eventhoughsamplesneedtobefixedandrequireexten-sivepreprocessing,transmissionelectronmicroscopyisstillfrequentlyusedforassayingendosomalescapeduetoitsunparalleledresolution.Itallowstovisuallydis-tinguishifthenanoparticlesarelocatedfreelyinthecytosol,orsequesteredinmembranousvesicles.Forinor-ganicnanoparticleslikeQdots[54],goldnanoparticles[107]andsuperparamagneticironoxideNP’s[14,108],labelingstepsareusuallynotnecessary(Fig.7AandC).However,organicnanoparticlescannotalwaysbeeasilydistinguished

T.F.Martensetal.

fromthecellularstructures,thoughforpolymericnanopar-ticles,opinionsvary.BieberandcoworkersdidnotlabelPEI-baseddeliveryvectors,arguingthattheelectrondensePEIwouldgivesufficientcontrastintheTEMimages(Fig.7B)[105].Ontheotherhand,osmiumtetroxideisfrequentlyusedtolabelpolymericdeliveryvectorssuchaspoly(lactic-co-glycolicacid)(PLGA)andPEItoenhancetheircontrast[49,109].Goldcanalsobeemployedascontrastagent,asusedforinstancebyGilleronandcolleaguestovisualizesiRNAinthecytosolorinmembranousvesicles[84](Fig.7D).Draw-backsofTEMincludethenecessityforfixationandthatbothsamplepreparationandanalysisisverylabor-intensive.Usually,endosomalescapeisscoredvisu-allybyassessingifthemajorityofthenanoparticulatecargoresidesinmembranousvesicles,orfreelyinthecytosol[14,49,54,105,109].Imelliandcoworkerspresentedquan-titativedataontheamountofviralnanoparticlesattheplasmamembrane,inthecytosolandintheendosomalvesicles,basedondatafrom8—10cellsand23—45par-ticlespercell[110].ThemostadvanceduseofTEMinthiscontextwasarguablypresentedbyGilleronandcol-leagueswhoproposedasemi-automaticquantificationofTEMimages,bywhichsiRNAcoupledto6nmcolloidalgoldnanoparticles(siRNA-GNP’s)areautomaticallydetectedinTEMimagesaftersettingacertainthreshold(Fig.7D,left).Manualassignmentoftheparticlestoeitherthecytosolicorvesicularlocationwasstillrequired(Fig.7D,middle).Interestingly,toassessifendosomalescapeofsiRNA-GNP’soccurredthroughaburst-likemechanisminaspecificcom-partmentorviagradualrelease,Gilleronandco-authorsplottedtheamountofparticlesinthecytosolovertime[84].Mathematicalmodelingshowedthatagradualreleaseofparticlesshouldleadtoalineartrend,whereasaburst-likemechanismshouldgiverisetoasigmoidalcurve.Experi-mentaldatashowedasigmoidalcurveinbothcelllines,indicatingaburst-likemechanism(Fig.7D,right).

Assessingtheendosomaldepotofnon-deliveredcargo

Additionalverificationoftheefficiencyofendosomalescapeisassayedbycheckingtheamountofcargostillsequesteredintheendolysosomalcompartmentsusingpreviouslydis-cussedmethods.Bydeliberatelydisruptingtheremaininglysosomesandcomparingtheamountofcargointhecytosolwithnormalcircumstances,onecangetanideaofthecargowhichisinefficientlydelivered.Thetechniquesusedforthisendosomaldisruption,e.g.protonsponge[50],Leu-Leu-OMe[38],PCI[12,78],osmoticshock[28],etc.havepreviouslybeenmentionedandthereaderisreferredtothissectionformoredetail(seesection‘Enhancingendosomalescape’).

Computationalmodelingofendosomalescape

Experimentalresultsfromdifferentassaysarefrequentlycombinedinamathematicalmodelinordertoestimatethoseparametersthataredifficulttomeasuredirectly.Forexample,computationalmodelingallowedVargaetal.[111]toestimatecellbinding,uptake,endosomalescape,vectorunpackagingandnuclearimportbycombiningquan-titativeexperimentalresultsonvectoruptake,amount

Intracellulardeliveryofnanomaterials

361

Figure7(A.)Visualizationofgoldnanoparticles(GNPs)bytransmissionelectronmicroscopy.RedarrowsindicatecytosolicGNPs,bluearrowsindicatesequesteredparticles.Scalebar500nm.Adaptedwithpermissionfrom[107],©2010AmericanChemicalSociety.(B)VisualizationofPEI-particlesbyTEMaselectron-densespots(whitearrows).PEI-particlesareseenassociatedwiththeendosomalmembrane(blackarrow),leadingtomembranedamage(arrowhead).Reprintedfrom[105],©2002,withpermissionfromElsevier.(C)TEM-visualizationofsuperparamagneticironoxidenanoparticles.Adaptedwithpermissionfrom[108],©2010JohnWiley&Sons,Inc.(D)QuantificationofendosomalescapebyGilleronandcolleagues(left)AutomaticdetectionofGNPscoupledtosiRNA.(middle)Avisualdistinctionwasmadebetweenearlyendosomes,lateendosomesandlysosomes,basedonvesicularmorphology.(right)Gradualreleaseandcompartment-specificreleasewereplottedovertime(respectivelyalinearcurveandasigmoidalcurve),andexperimentaldatawasfoundtocorrelatetoacompartment-specificrelease.AdaptedbypermissionfromMacmillanPublishersLtd:NatureBiotechnology[84],©2013.

ofpDNAinthenucleusandtransfectionefficiency.Simi-larly,Mooreandcolleagues[26]wereabletodeterminetheendosomalescaperateconstant(kescape)byfittingamathematicalmodeltoexperimentaldataobtainedbyratiometricnanosensorsmeasuringtheintracellularpHwithfluorescencemicroscopy.AstudybyDinhandcoworkers[112]furtheremphasizestheimportanceandusefulnessofmathematicalmodeling,butalsohighlightthelimitationthatmostmathematicalmodelsapproachcellulartransportmechanismsbyfirst-orderkineticsbetweenwell-definedcompartmentsonly.Accordingtotheauthors,theirstudyimprovesonpreviousmathematicalmodelsbyincorporat-ingthespatialstructureofthecell,aswellastakingintoaccountthecontinuousmovementofnanoparticles

basedonsingle-particletrackingexperiments.Alterna-tively,computationalmodelshavebeenusedasso-called‘‘computationalmicroscopy’’,demonstratedbyTianandMa[113].Bycoarse-grainmoleculardynamicsmodelingintheMARTINIforcefield,theauthorsinvestigatethemecha-nismofendosomalescapeofpH-responsivedendrimers.Bycomputationalmodeling,theauthorscouldobtainahigh-resolutionsimulationofhowtheendosomalmembraneisdestabilizedbytheprotonateddendrimers.

Conclusionsandfutureperspectives

Nanomaterialsforintracellulardrugdeliveryorcellimag-ingapplicationsrequireanefficientcytosolicdelivery

362

mechanism.Upuntilnow,theescapefromendosomalsequestrationandsubsequentdegradationremainsamajorbottleneck.Inordertodesignimprovednanomaterials,reli-ableassaysfordetectingandquantifyingendosomalescapearenecessary.Inthisreviewwehavegivenanoverviewofassaysthatarecurrentlyavailable.Giventhestrengthsandweaknessesofeachapproach,acombinationofcomplemen-tarymethodsispreferred,dependingonwhichaspectofendosomalescapeisinvestigated.

Notonlythemechanismortheefficiencyofendosomalescapeisofimportance.Itwouldbeofinterestinfuturestudiestotryandrelateendosomalescapetothetimeandlocationatwhichithappensinthecell.Suchinforma-tioncouldberelevantforavoidingprematuredegradationbytheacidicenvironmentofthelateendosomesortheharshhydrolyticconditionsofthelysosomes.Itisthereforeexpectedthatlivecellimagingwillonlygaininimportance.Acurrentlimitation,however,isthatthisismostlybasedonfluorescentlylabeledcargoorcarriermaterials.Asitmaybethatthisinfluencestheintracellularprocessingmechanismsorkinetics,itisofspecialinteresttolookintothecapa-bilitiesoflabel-freemicroscopytechniques,suchasRamanimaging,tofollowuponendosomalescape.

Acknowledgements

FinancialsupportbytheGhentUniversitySpecialResearchFund(01B04912andDEF08/FOP/010)andtheFundforScientificResearchFlanders(FWO,Belgium;G019711N)isacknowledgedwithgratitude.KRisapost-doctoralfellowoftheFWO.Theauthorshavenootherrelevantaffiliationsorfinancialinvolvementwithanyorganizationorentitywithafinancialinterestinorfinancialconflictwiththesubjectmatterormaterialsdiscussedinthemanuscriptapartfromthosedisclosed.Nowritingassistancewasutilizedintheproductionofthismanuscript.

References

[1]L.Rajendran,H.J.Knolker,K.Simons,Nat.Rev.DrugDiscov.

9(2010)29—42.

[2]J.G.Huang,T.Leshuk,F.X.Gu,NanoToday6(2011)478—492.[3]S.J.Soenen,P.Rivera-Gil,J.M.Montenegro,W.J.Parak,S.C.

DeSmedt,K.Braeckmans,NanoToday6(2011)446—465.[4]L.Y.Chou,K.Ming,W.C.Chan,Chem.Soc.Rev.40(2011)

233—245.

[5]D.Vercauteren,J.Rejman,T.F.Martens,J.Demeester,S.C.

DeSmedt,K.Braeckmans,J.Control.Release161(2012)566—581.

[6]N.M.Zaki,N.Tirelli,ExpertOpin.DrugDeliv.7(2010)

895—913.

[7]J.A.Mindell,Annu.Rev.Physiol.74(2012)69—86.

[8]J.B.Delehanty,H.Mattoussi,I.L.Medintz,Anal.Bioanal.

Chem.393(2009)1091—1105.

[9]A.M.Derfus,W.C.W.Chan,S.N.Bhatia,Adv.Mater.16(2004)

961—966.

[10]A.R.Bayles,H.S.Chahal,D.S.Chahal,C.P.Goldbeck,B.E.

Cohen,B.A.Helms,NanoLett.10(2010)4086—4092.

[11]F.Joris,B.B.Manshian,K.Peynshaert,S.C.DeSmedt,

K.Braeckmans,S.J.Soenen,Chem.Soc.Rev.42(2013)8339—8359.

[12]E.Gianolio,F.Arena,G.J.Strijkers,K.Nicolay,A.Hogset,S.

Aime,Magn.Reson.Med.65(2011)212—219.

T.F.Martensetal.

[13]H.B.Na,I.C.Song,T.Hyeon,Adv.Mater.21(2009)2133—2148.[14]S.H.Bakhru,E.Altiok,C.Highley,D.Delubac,J.Suhan,

T.K.Hitchens,C.Ho,S.Zappe,Int.J.Nanomed.7(2012)4613—4623.

[15]T.G.Iversen,T.Skotland,K.Sandvig,NanoToday6(2011)

176—185.

[16]J.Nguyen,F.C.Szoka,Acc.Chem.Res.45(2012)1153—1162.[17]E.Yuba,C.Kojima,A.Harada,Tana,S.Watarai,K.Kono,

Biomaterials31(2010)943—951.

[18]A.K.Varkouhi,M.Scholte,G.Storm,H.J.Haisma,J.Control.

Release151(2011)220—228.

[19]M.S.Shim,Y.J.Kwon,Adv.DrugDeliv.Rev.64(2012)

1046—1059.

[20]C.Pichon,L.Billiet,P.Midoux,Curr.Opin.Biotechnol.21

(2010)640—645.

[21]Y.W.Cho,J.D.Kim,K.Park,J.Pharm.Pharmacol.55(2003)

721—734.

[22]D.S.Dimitrov,Nat.Rev.Microbiol.2(2004)109—122.[23]K.L.Douglas,Biotechnol.Progr.24(2008)871—883.

[24]D.Hoekstra,J.Rejman,L.Wasungu,F.Shi,I.Zuhorn,

Biochem.Soc.Trans.35(2007)68—71.

[25]L.Wasungu,D.Hoekstra,J.Control.Release116(2006)

255—264.

[26]N.M.Moore,C.L.Sheppard,T.R.Barbour,S.E.Sakiyama-Elbert,J.GeneMed.10(2008)1134—1149.

[27]W.Li,F.Nicol,F.C.SzokaJr.,Adv.DrugDeliv.Rev.56(2004)

967—985.

[28]I.S.Zuhorn,U.Bakowsky,E.Polushkin,W.H.Visser,M.C.Stu-art,J.B.Engberts,D.Hoekstra,Mol.Ther.11(2005)801—810.[29]J.P.Behr,Chimia51(1997)34—36.

[30]A.R.Graves,P.K.Curran,C.L.Smith,J.A.Mindell,Nature453

(2008)788—792.

[31]O.Boussif,F.Lezoualc’h,M.A.Zanta,M.D.Mergny,D.Scher-man,B.Demeneix,J.P.Behr,Proc.Natl.Acad.Sci.U.S.A.92(1995)7297—7301.

[32]C.Lin,Z.Y.Zhong,M.C.Lok,X.L.Jiang,W.E.Hennink,

J.Feijen,J.F.J.Engbersen,BioconjugateChem.18(2007)138—145.

[33]P.K.Selbo,A.Weyergang,A.Hogset,O.J.Norum,M.B.

Berstad,M.Vikdal,K.Berg,J.Control.Release148(2010)2—12.

[34]K.G.deBruin,C.Fella,M.Ogris,E.Wagner,N.Ruthardt,C.

Brauchle,J.Control.Release130(2008)175—182.

[35]A.E.Vasdekis,E.A.Scott,C.P.O’Neil,D.Psaltis,J.A.Hubbell,

ACSNano6(2012)7850—7857.

[36]H.Kim,W.J.Kim,Small10(2014)117—126.

[37]Z.Qin,J.C.Bischof,Chem.Soc.Rev.41(2012)1191—1217.[38]V.Hornung,F.Bauernfeind,A.Halle,E.O.Samstad,H.Kono,

K.L.Rock,K.A.Fitzgerald,E.Latz,Nat.Immunol.9(2008)847—856.

[39]S.Abes,D.Williams,P.Prevot,A.Thierry,M.J.Gait,B.

Lebleu,J.Control.Release110(2006)595—604.

[40]S.H.Lee,S.H.Choi,S.H.Kim,T.G.Park,J.Control.Release

125(2008)25—32.

[41]S.H.Choi,S.H.Lee,T.G.Park,Biomacromolecules7(2006)

1864—1870.

[42]K.Remaut,N.N.Sanders,B.G.DeGeest,K.Braeckmans,

J.Demeester,S.C.DeSmedt,Mater.Sci.Eng.R58(2007)117—161.

[43]D.Pozzi,C.Marchini,F.Cardarelli,H.Amenitsch,C.Garulli,

A.Bifone,G.Caracciolo,Biochim.Biophys.Acta1818(2012)2335—2343.

[44]Z.Hyvonen,V.Hamalainen,M.Ruponen,B.Lucas,J.Rejman,

D.Vercauteren,J.Demeester,S.DeSmedt,K.Braeckmans,J.Control.Release162(2012)167—175.

[45]S.Kakimoto,T.Hamada,Y.Komatsu,M.Takagi,T.Tanabe,

H.Azuma,S.Shinkai,T.Nagasaki,Biomaterials30(2009)402—408.

Intracellulardeliveryofnanomaterials

[46]A.Kichler,C.Leborgne,E.Coeytaux,O.Danos,J.GeneMed.

3(2001)135—144.

[47]R.A.Jones,C.Y.Cheung,F.E.Black,J.K.Zia,P.S.Stayton,

A.S.Hoffman,M.R.Wilson,Biochem.J.372(2003)65—75.[48]U.F.Greber,M.Willetts,P.Webster,A.Helenius,Cell75(1993)

477—486.

[49]J.Panyam,W.Z.Zhou,S.Prabha,S.K.Sahoo,V.Labhasetwar,

FASEBJ.16(2002)1217—1226.

[50]M.Colin,M.Maurice,G.Trugnan,M.Kornprobst,R.P.Har-bottle,A.Knight,R.G.Cooper,A.D.Miller,J.Capeau,C.Coutelle,M.C.Brahimi-Horn,GeneTher.7(2000)139—152.[51]K.M.Fichter,N.P.Ingle,P.M.McLendon,T.M.Reineke,ACS

Nano7(2013)347—364.

[52]S.Drose,K.Altendorf,J.Exp.Biol.200(1997)1—8.

[53]F.Salomone,F.Cardarelli,M.DiLuca,C.Boccardi,R.Nifosi,

G.Bardi,L.DiBari,M.Serresi,F.Beltram,J.Control.Release163(2012)293—303.

[54]K.Boeneman,J.B.Delehanty,J.B.Blanco-Canosa,K.Susumu,

M.H.Stewart,E.Oh,A.L.Huston,G.Dawson,S.Ingale,R.Walters,M.Domowicz,J.R.Deschamps,W.R.Algar,S.Dimag-gio,J.Manono,C.M.Spillmann,D.Thompson,T.L.Jennings,P.E.Dawson,I.L.Medintz,ACSNano7(2013)3778—3796.[55]S.T.Yang,E.Zaitseva,L.V.Chernomordik,K.Melikov,Biophys.

J.99(2010)2525—2533.

[56]N.Mebarek,A.Aubert-Pouessel,C.Gerardin,R.Vicente,J.M.

Devoisselle,S.Begu,Int.J.Pharm.454(2013)611—620.[57]F.Madani,R.Abdo,S.Lindberg,H.Hirose,S.Futaki,U.

Langel,A.Graslund,Biochim.Biophys.Acta1828(2013)1198—1204.

[58]S.M.VanRossenberg,K.M.Sliedregt-Bol,N.J.Meeuwenoord,

T.J.VanBerkel,J.H.VanBoom,G.A.VanDerMarel,E.A.Biessen,J.Biol.Chem.277(2002)45803—45810.

[59]E.Mastrobattista,G.A.Koning,L.vanBloois,A.C.S.Filipe,W.

Jiskoot,G.Storm,J.Biol.Chem.277(2002)27135—27143.[60]D.K.Bonner,C.Leung,J.Chen-Liang,L.Chingozha,R.Langer,

P.T.Hammond,BioconjugateChem.22(2011)1519—1525.[61]C.M.Wiethoff,H.Wodrich,L.Gerace,G.R.Nemerow,J.Virol.

79(2005)1992—2000.

[62]P.Seth,D.J.P.Fitzgerald,M.C.Willingham,I.Pastan,J.Virol.

51(1984)650—655.

[63]C.L.Moyer,C.M.Wiethoff,O.Maier,J.G.Smith,G.R.

Nemerow,J.Virol.85(2011)2631—2641.

[64]O.Maier,D.L.Galan,H.Wodrich,C.M.Wiethoff,Virology402

(2010)11—19.

[65]R.Fischer,K.Kohler,M.Fotin-Mleczek,R.Brock,J.Biol.

Chem.279(2004)12625—12635.

[66]Z.urRehman,D.Hoekstra,I.S.Zuhorn,ACSNano7(2013)

3767—3777.

[67]O.Maier,S.A.Marvin,H.Wodrich,E.M.Campbell,C.M.

Wiethoff,J.Virol.86(2012)10821—10828.

[68]A.El-Sayed,I.A.Khalil,K.Kogure,S.Futaki,H.Harashima,

J.Biol.Chem.283(2008)23450—23461.

[69]K.Miyauchi,Y.Kim,O.Latinovic,V.Morozov,G.B.Melikyan,

Cell137(2009)433—444.

[70]M.Lakadamyali,M.J.Rust,H.P.Babcock,X.Zhuang,Proc.

Natl.Acad.Sci.U.S.A.100(2003)9280—9285.

[71]I.LeBlanc,P.P.Luyet,V.Pons,C.Ferguson,N.Emans,A.

Petiot,N.Mayran,N.Demaurex,J.Faure,R.Sadoul,R.G.Parton,J.Gruenberg,Nat.CellBiol.7(2005)653—664.

[72]J.Otterstrom,A.M.vanOijen,Biochemistry52(2013)

1654—1668.

[73]S.Berezhna,S.Schaefer,R.Heintzmann,M.Jahnz,G.Boese,

A.Deniz,P.Schwille,Biochim.Biophys.Acta1669(2005)193—207.

[74]T.Kobayashi,M.H.Beuchat,J.Chevallier,A.Makino,N.

Mayran,J.M.Escola,C.Lebrand,P.Cosson,T.Kobayashi,J.Gruenberg,J.Biol.Chem.277(2002)32157—32164.

363

[75]M.Traikia,D.E.Warschawski,O.Lambert,J.L.Rigaud,P.F.

Devaux,Biophys.J.83(2002)1443—1454.

[76]C.S.Lee,W.Park,S.J.Park,K.Na,Biomaterials34(2013)

9227—9236.

[77]E.Prchla,C.Plank,E.Wagner,D.Blaas,R.Fuchs,J.CellBiol.

131(1995)111—123.

[78]Z.Garaiova,S.P.Strand,N.K.Reitan,S.Lelu,S.O.Storset,K.

Berg,J.Malmo,O.Folasire,A.Bjorkoy,L.DaviesCde,Int.J.Biol.Macromol.51(2012)1043—1051.

[79]T.Suma,K.Miyata,Y.Anraku,S.Watanabe,R.J.Christie,H.

Takemoto,M.Shioyama,N.Gouda,T.Ishii,N.Nishiyama,K.Kataoka,ACSNano6(2012)6693—6705.

[80]Y.Sakurai,H.Hatakeyama,Y.Sato,H.Akita,K.Takayama,

S.Kobayashi,S.Futaki,H.Harashima,Biomaterials32(2011)5733—5742.

[81]K.Maier,I.Martin,E.Wagner,Mol.Pharmacol.9(2012)

3560—3568.

[82]S.Hama,H.Akita,R.Ito,H.Mizuguchi,T.Hayakawa,H.

Harashima,Mol.Ther.13(2006)786—794.

[83]H.Akita,R.Ito,I.A.Khalil,S.Futaki,H.Harashima,Mol.Ther.

9(2004)443—451.

[84]J.Gilleron,W.Querbes,A.Zeigerer,A.Borodovsky,G.Mar-sico,U.Schubert,K.Manygoats,S.Seifert,C.Andree,M.Stoter,H.Epstein-Barash,L.Zhang,V.Koteliansky,K.Fitzger-ald,E.Fava,M.Bickle,Y.Kalaidzidis,A.Akinc,M.Maier,M.Zerial,Nat.Biotechnol.31(2013)638—646.

[85]M.Manunta,L.Izzo,R.Duncan,A.T.Jones,J.DrugTarget.

15(2007)37—50.

[86]S.C.Richardson,N.G.Pattrick,N.Lavignac,P.Ferruti,R.

Duncan,J.Control.Release142(2010)78—88.

[87]G.Basha,T.I.Novobrantseva,N.Rosin,Y.Y.Tam,I.M.Hafez,

M.K.Wong,T.Sugo,V.M.Ruda,J.Qin,B.Klebanov,M.Ciu-folini,A.Akinc,Y.K.Tam,M.J.Hope,P.R.Cullis,Mol.Ther.19(2011)2186—2200.

[88]K.Mellert,M.Lamla,K.Scheffzek,R.Wittig,D.Kaufmann,

PLoSONE7(2012)e52473.

[89]Y.J.Lee,S.Datta,J.P.Pellois,J.Am.Chem.Soc.130(2008)

2398—2399.

[90]S.Nechaev,C.Gao,D.Moreira,P.Swiderski,A.Jozwiak,C.M.

Kowolik,J.Zhou,B.Armstrong,A.Raubitschek,J.J.Rossi,M.Kortylewski,J.Control.Release170(2013)307—315.

[91]A.Akinc,M.Thomas,A.M.Klibanov,R.Langer,J.GeneMed.

7(2005)657—663.

[92]R.V.Benjaminsen,M.A.Mattebjerg,J.R.Henriksen,S.M.

Moghimi,T.L.Andresen,Mol.Ther.21(2013)149—157.

[93]T.Merdan,K.Kunath,D.Fischer,J.Kopecek,T.Kissel,Pharm.

Res.19(2002)140—146.

[94]J.B.Delehanty,C.E.Bradburne,K.Boeneman,K.Susumu,D.

Farrell,B.C.Mei,J.B.Blanco-Canosa,G.Dawson,P.E.Daw-son,H.Mattoussi,I.L.Medintz,Integr.Biol.(Camb.)2(2010)265—277.

[95]K.Remaut,N.Symens,B.Lucas,J.Demeester,S.C.DeSmedt,

J.Control.Release144(2010)65—74.

[96]N.M.Zaki,A.Nasti,N.Tirelli,Macromol.Biosci.11(2011)

1747—1760.

[97]K.Itaka,A.Harada,Y.Yamasaki,K.Nakamura,H.Kawaguchi,

K.Kataoka,J.GeneMed.6(2004)76—84.

[98]R.Mo,Q.Sun,N.Li,C.Zhang,Biomaterials34(2013)

2773—2786.

[99]V.Zinchuk,O.Zinchuk,T.Okada,ActaHistochem.Cytochem.

40(2007)101—111.

[100]F.Cardarelli,D.Pozzi,A.Bifone,C.Marchini,G.Caracciolo,

Mol.Pharmacol.9(2012)334—340.

[101]D.Vercauteren,H.Deschout,K.Remaut,J.F.Engbersen,A.T.

Jones,J.Demeester,S.C.DeSmedt,K.Braeckmans,ACSNano5(2011)7874—7884.

364

[102]H.Deschout,T.Martens,D.Vercauteren,K.Remaut,J.

Demeester,S.C.DeSmedt,K.Neyts,K.Braeckmans,Int.J.Mol.Sci.14(2013)16485—16514.

[103]S.Bolte,F.P.Cordelieres,J.Microsc.224(2006)213—232.[104]B.F.Lin,D.Missirlis,D.V.Krogstad,M.Tirrell,Biochemistry

51(2012)4658—4668.

[105]T.Bieber,W.Meissner,S.Kostin,A.Niemann,H.P.Elsasser,J.

Control.Release82(2002)441—454.

[106]K.Rombouts,T.F.Martens,E.Zagato,J.Demeester,S.C.De

Smedt,K.Braeckmans,K.Remaut,Mol.Pharm.11(2014)1359—1368.

[107]Z.Krpetic,P.Nativo,V.See,I.A.Prior,M.Brust,M.Volk,Nano

Lett.10(2010)4549—4554.

[108]R.E.Serda,A.Mack,A.L.vandeVen,S.Ferrati,K.Dunner

Jr.,B.Godin,C.Chiappini,M.Landry,L.Brousseau,X.Liu,A.J.Bean,M.Ferrari,Small6(2010)2691—2700.

[109]S.Mishra,P.Webster,M.E.Davis,Eur.J.CellBiol.83(2004)

97—111.

[110]N.Imelli,Z.Ruzsics,D.Puntener,M.Gastaldelli,U.F.Greber,

Virol.J.6(2009)174.

[111]C.M.Varga,N.C.Tedford,M.Thomas,A.M.Klibanov,L.G.

Griffith,D.A.Lauffenburger,GeneTher.12(2005)1023—1032.[112]A.T.Dinh,C.Pangarkar,T.Theofanous,S.Mitragotri,Biophys.

J.92(2007)831—846.

[113]W.D.Tian,Y.Q.Ma,SoftMatter8(2012)6378—6384.

ThomasF.MartensobtainedhisMaster’sDegreeinBioscienceEngineeringfromGhentUniversityin2009.Lateron,hemovedtothefacultyofPharmaceuticalScienceswherehestartedhisPhDresearchunderthesupervisionofProf.KevinBraeckmansintheBio-PhotonicImagingGroup.HisPhDprojectinvestigatestheoptimaldeliveryofnanomedicinestotheretinaviaintraocularadministration.Hisresearchinterestsincludeadvancedlightmicroscopy,oculargenetherapyandintracel-lularprocessingofnanomaterials.

KatrienRemautwasbornonthe10thofNovember1978inGhent.In2001,shegraduatedasPharmacistwiththegreatestdistinctionatGhentUniversity.ShethenstartedresearchworkintheLabofGen-eralBiochemistryandPhysicalPharmacyunderguidanceofProf.DeSmedtandProf.Demeester.In2007,shereceivedthetitleofdoctorinpharmaceuticalscienceswithherdissertation‘Exploringtherelationbetweentheintracellularfateandbiologicalactivity

ofnucleicacidnanoparticles’.Katrienreceivedseveralscientificprices(e.g.beststudentprice,2posterprices,priceoftheRoyalAcademyofMedicineforScientificResearchinPharmacy,period2008—2011)andwaselectedin2013asmemberoftheYoungAcademyinFlanders.Asapostdoc,KatrienperformedresearchattheEuropeanMolecularBiologyLaboratory(EMBL,Germany)andiscurrentlybackatGhentUniversity,attheLabofGeneralBiochem-istryandPhysicalPharmacy.

JoDemeester(1951)earnedaPh.D.inPhar-maceuticalScienceswithgreatestdistinctionatGhentUniversity(1980),wherehebecameProfessor(1989)andheadoftheLaboratoryofGeneralBiochemistryandPhysicalPharmacy(1997).HeislaureateoftheBelgianRoyalAcademyofSciencesandFirstLaureateoftheTravelgrantoftheMinistryofEducation.HewasVice-PresidentoftheBelgianBiophysicalSocietyandPresidentoftheBelgianSociety

T.F.Martensetal.

ofPharmaceuticalSciences.Since1994heisDirectoroftheInternationalCentreforStandardsoftheInternationalPharma-ceuticalFederation(F.I.P).Since2003heisPresidentoftheF.I.P.EnzymeCommission.HiscurrentresearchinterestsaredescribedinthedifferentprojectsattheLaboratoryofGeneralBiochem-istryandPhysicalPharmacy.HispublicationsincludecontributionstoChemicalReviews,differentNaturejournals,etc.Hisresearchonencodingmicrocarriersleadtotwopatentapplicationsandtheuniversityspin-offMemobeadTechnologies.

StefaanC.DeSmedt(1967)studiedphar-macyatGhentUniversity(Belgium)andgraduatedin1995.Hejoinedthepharmaceu-ticaldevelopmentgroupofJanssenResearchFoundation.In1999hebecameProfessoratGhentUniversitywhereheischairingtheGhentResearchGrouponNanomedicines.Since2004heservesasEuropeanAssociateEditoroftheJournalofControlledRelease.Hisresearchisattheinterfacebetweendrugdelivery,biophysics,materialsciencesand

advancedopticalimaging.Hereceivedthe2006CRSYoungInves-tigatorAwardandthe2010APVResearchAwardforOutstandingAchievementsinPharmaceuticalSciences.Heisscientificfounderofspin-offMemobeadTechnologies.

KevinBraeckmanshavingobtainedaMas-terdegreeinPhysicsatGhentUniversity(Belgium)in1999,hejoinedtheLaboratoryofGeneralBiochemistryandPhysicalPhar-macy(GhentUniversity)toperformresearchonadvancedopticalmicroscopymethodsforpharmaceuticalapplications.DuringhisPh.D.hewasinvolvedinthedevelopmentofanewtypeofencodedmicrocarriersfordiagnosticapplications,forwhichhereceivedthefirstpriceforYoungBiotechnologyResearchfrom

theFundsofBiotechnology(FBBF,Belgium)in2005.HavingobtainedhisPh.D.in2004,hereceivedafellowshipoftheFundforScientificResearch—Flandersasapost-doctoralresearcher.In2005hejoinedthegroupofprof.Braüchle(LehrstuhlfürPhysikalischeChemieI)attheLudwig-MaximiliansUniversitätMünchenwherehewasinvolvedinthedevelopmentofalgorithmsandsoftwareforsingleparticletrackinganalysis.In2008hewasappointedasprofessoratthefac-ultyofPharmaceuticalSciencesofGhentUniversitywhereheiscurrentlyleadingtheBio-PhotonicImagingGroup,hostedbytheLaboratoryofGeneralBiochemistryandPhysicalPharmacy,inclosecollaborationwiththeGhentResearchGrouponNanomedicines.Hiscurrentresearchtopicsinvolvethedevelopmentandapplicationofbio-photonicmethodsforstudyingtheinteractionofnanomaterialsfordrugdeliveryandbio-imagingwithbiologicalbarriers.

因篇幅问题不能全部显示,请点此查看更多更全内容