(12)发明专利申请
(10)申请公布号 CN 106700113 A(43)申请公布日 2017.05.24
(21)申请号 201710025817.8(22)申请日 2017.01.13
(71)申请人 合肥微晶材料科技有限公司
地址 230088 安徽省合肥市高新区黄山路
602号A105(72)发明人 张梓晗 吕鹏 陶豹
(74)专利代理机构 安徽省合肥新安专利代理有
限责任公司 34101
代理人 卢敏 何梅生(51)Int.Cl.
C08J 7/04(2006.01)C09D 133/00(2006.01)C09D 7/12(2006.01)C09J 9/02(2006.01)B32B 27/28(2006.01)
(54)发明名称
一种透明加热膜及其制备方法(57)摘要
本发明公开了一种透明加热膜及其制备方法,其包括两透明基底,两透明基底之间通过粘结剂粘合;两透明基底相粘合的表面皆通过涂布加热膜浆料并烘干而形成有加热膜层;其中加热膜浆料是由银纳米线、石墨烯、粘结剂、增稠剂、小分子分散剂、流平剂及水混合而成。本发明方法制备的透明加热膜的可见光透过率可以达到80%左右,耐弯折、表面耐擦洗、升温速度快,可以广泛应用于安全帽罩除雾、户外监视器加热除雾、户外携带式仪器、驾驶舱显示器等领域。
B32B 27/06(2006.01)
B32B 27/36(2006.01)B32B 27/32(2006.01)B32B 27/30(2006.01)B32B 17/06(2006.01)B32B 7/12(2006.01)B32B 33/00(2006.01)B32B 37/12(2006.01)H05B 3/14(2006.01)H05B 3/34(2006.01)C08L 67/02(2006.01)
权利要求书1页 说明书4页 附图1页
CN 106700113 ACN 106700113 A
权 利 要 求 书
1/1页
1.一种透明加热膜,其特征在于:包括两透明基底,两透明基底之间通过粘结剂粘合;两透明基底相粘合的表面皆通过涂布加热膜浆料并烘干而形成有加热膜层;
所述加热膜浆料的各原料按质量分数的构成为:
2.根据权利要求1所述的透明加热膜,其特征在于:所述粘结剂为水性丙烯酸树脂或水性聚氨酯树脂;
所述水性丙烯酸树脂为牌号S-20、S-70、S-90、S-120、S-160、S-812、S-820中的至少一种;所述水性聚氨酯树脂为拜耳水性聚氨酯树酯Bayhydrol B130、Bayhydrol F245中的至少一种。
3.根据权利要求1所述的透明加热膜,其特征在于:所述增稠剂为羟丙基甲基纤维素、羟乙基纤维素、羧甲基纤维素钠、聚丙烯酸钠中的至少一种;
所述小分子分散剂为十二烷基苯磺酸钠、六偏磷酸钠、乙醇、异丙醇、丙三醇中的至少一种;
所述流平剂为Zonyl FSO、Zonyl FSJ、Zonyl FSA、Zonyl FS-520中的至少一种。4.根据权利要求1所述的透明加热膜,其特征在于:所述透明基底为聚酰亚胺薄膜、PET薄膜、PC薄膜、PP薄膜、PMMA薄膜、PVC薄膜或无机玻璃。
5.根据权利要求1所述的透明加热膜,其特征在于:所述银纳米线的直径为10~200nm、长度为10-200μm。
6.根据权利要求1所述的透明加热膜,其特征在于:所述粘结剂为导电铜胶。7.根据权利要求1所述的透明加热膜,其特征在于:在所述透明基底上形成的加热膜层为任意形状。
8.一种权利要求1~7中任意一项所述透明加热膜的制备方法,其特征在于,包括如下步骤:
(1)将银纳米线、石墨烯、粘结剂、增稠剂、小分子分散剂、流平剂及水按比例混合均匀,得加热膜浆料;
(2)将所述加热膜浆料通过涂布机涂布在透明基底的一面,然后烘干,形成加热膜层;在所述加热膜层上焊接铬锆铜电极;
(3)将两完成步骤(2)的透明基底使用粘结剂进行粘合;最后再将两透明基底加热膜层上的铬锆铜电极引出并连接电源,即完成透明加热膜的制备。
2
CN 106700113 A
说 明 书
一种透明加热膜及其制备方法
1/4页
技术领域[0001]本发明涉及电加热元件,特别是涉及一种透明加热膜及其制备方法。
背景技术[0002]目前,加热膜的类型一般分为转印油墨型、碳纤维型、金属丝片型、高分子导电材料型。其中转印油墨型电热膜的发热材料一般为石墨、金属粉末、金属氧化物,其缺点是导热效率一般。碳纤维型电热膜的发热材料一般为碳纤维,其在350℃空气中开始氧化失重,导致电阻率变化,电热性能不稳定,甚至带来危险。金属基电热膜的发热材料为纯金属或金属合金材料,主要采用铜、镍、铜镍、铁铬铝,其容易产生高电磁辐射,且易老化、使用能耗高、发热面积小。高分子导电材料型电热膜的发热材料主要为导电高分子,其导热效率低。以上传统材料在制备高导热效率与高透明度的加热膜时综合性能不佳。[0003]传统加热膜的制备工艺一般为:在绝缘材料表面经过一定的工艺加工后形成一层导电薄膜,其中导电粒子在绝缘层的表面形成网状晶格结构,同时薄膜中加入各种助剂达到可以调节电热膜功率的目的。目前,加热膜材料的性能要求越来越高,兼具光学和热学的透明和半透明加热膜已经被广泛应用于汽车、飞机、冰箱等设备的玻璃除霜,其一般采用磁控溅射及喷涂热分解的方式制备。但是由于家用电器的形状都极为复杂,采用磁控溅射及喷涂热分解的方式难以将半导体导电膜复合到电加热器具上,存在加工困难的问题。[0004]关于透明加热膜的新材料的相关研究较少。银纳米线不仅具有高度透明的独特光学特性,而且具有高电导率和热导率;石墨烯同样是一种优良的热导体,在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计,其导热系数高达5000W/(m·K),优于碳纳米管,更是比一些常见金属,如金、银、铜等高10倍以上。因此,银纳米线和石墨烯有望应用于在透明加热膜。发明内容[0005]本发明是为避免上述现有技术所存在的不足之处,提供一种透明加热膜及其制备方法,以期可以通过新材料的利用提高加热膜的性能。[0006]为了实现上述发明目的,本发明采用如下技术方案:[0007]本发明的透明加热膜,其特点在于:包括两透明基底,两透明基底之间通过粘结剂粘合;两透明基底相粘合的表面皆通过涂布加热膜浆料并烘干而形成有加热膜层;[0008]所述加热膜浆料的各原料按质量分数的构成为:
[0009]
3
CN 106700113 A
说 明 书
2/4页
[0010]
其中:
[0012]所述粘结剂为水性丙烯酸树脂或水性聚氨酯树脂;所述水性丙烯酸树脂为牌号S-20、S-70、S-90、S-120、S-160、S-812、S-820中的至少一种;所述水性聚氨酯树脂为拜耳水性聚氨酯树酯Bayhydrol B130、Bayhydrol F245中的至少一种。[0013]所述增稠剂为羟丙基甲基纤维素、羟乙基纤维素、羧甲基纤维素钠、聚丙烯酸钠中的至少一种;所述小分子分散剂为十二烷基苯磺酸钠、六偏磷酸钠、乙醇、异丙醇、丙三醇中的至少一种;所述流平剂为Zonyl FSO、Zonyl FSJ、Zonyl FSA、Zonyl FS-520中的至少一种。[0014]所述透明基底为聚酰亚胺薄膜、PET薄膜、PC薄膜、PP薄膜、PMMA薄膜、PVC薄膜或无机玻璃。[0015]所述银纳米线的直径为10~200nm、长度为10-200μm。[0016]所述粘结剂为导电铜胶。[0017]根据需要,在所述透明基底上形成的加热膜层可以为任意形状,如正方形、矩形、圆形或各种形状的组合构型。[0018]上述透明加热膜的制备方法,包括如下步骤:[0019](1)将银纳米线、石墨烯、粘结剂、增稠剂、小分子分散剂、流平剂及水按比例混合均匀,得加热膜浆料;[0020](2)将所述加热膜浆料通过涂布机涂布在透明基底的一面,然后烘干,形成加热膜层;在所述加热膜层上焊接铬锆铜电极;[0021](3)将两完成步骤(2)的透明基底使用粘结剂进行粘合,最后将两透明基底加热膜层上的铬锆铜电极引出并连接电源,即完成透明加热膜的制备。[0022]本发明的有益效果体现在:[0023]1、本发明制备的透明加热膜综合性能参数优异,其可见光透过率一般可以达到80%左右,更优秀的透过率可以达到90%,同时其加热升温响应速度快,一般10s即可达到设定峰值。[0024]2、本发明制备的透明加热膜热稳定性高,可长期在低于120℃条件下使用,所占空间小,质量轻,厚度极薄,一般低于0.3mm,同时耐弯折性能高。[0025]3、本发明制备的透明加热膜采用新材料银纳米线和石墨烯复合结构,利用一维线性结构和片状结构组合成立体网状结构,该种组合方式极大的节省材料使用量,同时发挥了金属银和石墨烯优良的导热性能,又可利用银纳米线和石墨烯达到良好的透过率要求,为以后具有相似结构材料的发展提供了良好的基础。
4
[0011]
CN 106700113 A
说 明 书
3/4页
附图说明[0026]图1为本发明透明加热膜的结构示意图;[0027]图2为在透明基底上形成的加热膜层的形状示意图;[0028]图中标号:1为透明基底,2为透明加热层,3为粘结层,4为铬锆铜电极。
具体实施方式[0029]下面将通过实施例和附图来对本发明的技术方案做清晰的阐述说明。[0030]下述实施例所用原料型号、厂家如下:[0031]银纳米线,源自合肥微晶材料科技有限公司,可市场购买;[0032]石墨烯,源自合肥微晶材料科技有限公司,可市场购买;[0033]水性丙烯酸树脂S-812,购买自韩国韩华集团;[0034]羟丙基甲基纤维素,购买自合肥美丰化工有限公;[0035]十二烷基苯磺酸钠,购买自合肥美丰化工有限公司;[0036]流平剂Zonyl FSO,购买自广州和氏璧化工材料有限公司;[0037]Cu-211铜粉导电胶,AiBOND,购自上海耳邦贸易有限公司。[0038]实施例1[0039]如图1所示,本实施例的透明加热膜,包括两透明基底1,两透明基底之间通过粘结层3贴合;两透明基底相贴合的表面皆通过涂布加热膜浆料并烘干而形成加热膜层2。在加热膜层2上焊接有铬锆铜电极4。[0040]本实施例的透明加热膜按如下步骤制备:[0041](1)将银纳米线、石墨烯、水性丙烯酸树脂S-812、羟丙基甲基纤维素、十二烷基苯磺酸钠、流平剂Zonyl FSO及水按比例混合均匀,得加热膜浆料;[0042](2)将加热膜浆料通过涂布机涂布在透明基底PET的一面,然后120℃烘干30min,形成加热膜层;在加热膜层上焊接铬锆铜电极;加热膜层除本实施例的整片式薄膜结构外,还可以根据需要设计为任意形状,例如图2所示的结构。[0043](3)将两完成步骤(2)的透明基底贴合,然后使用Cu-211铜粉导电胶进行粘合,最后将两透明基底加热膜层上的铬锆铜电极引出并连接电源,即完成透明加热膜的制备。[0044]实施例2~4[0045]实施例2~4的透明加热膜的结构与实施例1相同,区别仅在于加热膜浆料的配方,具体见表1,各原料总质量份为100%,余量为水。[0046]表1
[0047]
实施例1234
[0048]
银纳米线0.1%1%0.1%1%
石墨烯0.01%0.01%0.05%0.05%
S-81210%10%20%20%
十二烷基苯磺酸钠0.1%0.1%0.1%0.1%
羟丙基甲基纤维素1%1%1%1%
Zonyl FSO0.1%0.1%0.1%0.1%
对各实施例所得样品进行如下性能测试:
5
CN 106700113 A[0049]
说 明 书
4/4页
透过率测定:采用申光牌型号为WGW的光电雾度测试仪测量样品的可见光透过率。
[0050]加热膜温度测试和升温时间测试:使用美创MCH-305D直流电源对样品提供12V的输出电压,在环境温度为25℃下,测量其稳定后温度,及达到稳定温度所需要的时间。[0051]采用弯折试验机WJJ-6C进行抗弯折实验,弯折角度90°,制样长×宽×高为150×50×3(mm),弯折次数为1000次。定义弯折后不改变样品升至最高温度的升温时间和最高温度为升温稳定性、温度稳定性良好,否则为差。[0052]弯折后温度均匀性测试:弯折后,电热膜试件在正常工作条件下以1.15倍额定输入功率工作,使其升温达到稳定工作状态后,用辐射测温仪测量并记录9个测温点的温度值。比较9个温度值中的最大值和最小值,然后取其差值,差值小于7℃温度均匀性良好,否则为差。[0053]弯曲半径测试:采用国标GB-T 6742-2007测试色漆和清漆的弯曲试验的实验方法测量各样品的弯曲半径。[0054]上述的测试结果见表2。[0055]表2
[0056]
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。
[0057]
6
CN 106700113 A
说 明 书 附 图
1/1页
图1
图2
7
因篇幅问题不能全部显示,请点此查看更多更全内容