sin (K·360˚+α) = sinα or sin(2Kπ+α)= sinα cos (K·360˚+α) = cosα or cos (2Kπ+α) = cosα tan (K·360˚+α) = tanα or tan (2Kπ+α) = tanα
cot (K·360˚+α) = cotα or cot (2Kπ+α) = cotα
倒数关系:sinα·cscα=1 商数关系:tanα= sinα/cosα 平方关系: sin²α+cos²α=1 cosα• secα=1 cotα= cosα/sinα 1+tan²α= sec²α tanα• cotα=1 1+cot²α= csc²α
诱导公式:sin (k•360˚+α) = sinα sin (180˚+α) = -sinα sin (180˚- α) = sinα cos (k•360˚+α ) = cosα cos (180˚+α) = -cosα cos (180˚-α) = -cosα tan (k•360˚+α) = tanα tan (180˚+α) = tanα tan (180˚- α) = -tanα cot (k•360˚+α) = cotα cot (180˚+α) = cotα cot (180˚-α) = -cotα
sin (-α) = -sinα sin (360˚-α) = -sinα cos (-α) = cosα cos (360˚-α) = cosα tan (-α) = -tanα tan (360˚-α) = -tanα cot (-α) = -cotα cot (360˚-α) = -cotα
三角函数值之间关系: sin (90˚ - α) = cosα sin (90˚ + α) = cosα
cos (90˚ - α) = sinα cos (90˚ +α) = -sinα tan (90˚ - α) = cotα tan (90˚ +α) = -cotα cot (90˚ - α) = tanα cot (90˚ +α) = -tanα sin (270˚ - α) = -cosα sin (270˚ + α) = -cosα cos (270˚ - α) = -sinα cos (270˚ +α) = sinα tan (270˚ - α) = cotα tan (270˚ +α) = -cotα cot (270˚ - α) = tanα cot (270˚ +α) = -tanα
两角和差公式: sin (α+β) = sinαcosβ+ cosαsinβ cos (α+β) = cosαcosβ- sinαsinβ
sin (α-β) = sinαcosβ- cosαsinβ cos (α-β) = cosαcosβ+ sinαsinβ
tan (α+β) = (tanα+tanβ) / (1-tanαtanβ) tan (α-β) = (tanα- tanβ) / (1+tanαtanβ)
二倍角公式: sin2α= 2sinαcosα tan2α=2 tanα/(1- tan²α)
cos2α= cos²α - sin²α
cos2α= 1- 2sin²α cos² α= (1+cos2α)/2 cos2α= 2cos²α- 1 sin²α= (1 - cos2α)/2
半角公式: sinα/2 = ±√(1 - cosα)/2
cosα/2 = ±√(1+cosα)/2
tanα/2 = sinα/(1+cosα) = (1-cosα)/sinα = ±√(1- cosα)/(1+cosα)
积化和差公式: sinαcosβ=1/2[sin(α+β)+sin(α-β)] cosαsinβ= 1/2[sin(α+β)- sin(α-β)] cosαcosβ=1/2[cos(α+β)+cos(α-β)] sinαsinβ= -1/2[cos(α+β)- cos(α-β)]
和差化积公式: sinx+siny =2sin[(x+y) /2]•cos[(x-y) /2] sinx – siny =2cos[(x+y)/2]•sin[(x – y ) /2] cosx+cosy =2cos[(x+y)]/2·cos[(x-y) /2] cosx - cosy = -2sin[(x+y)]2•sin[(x-y)/2]
正弦定理: a/sinA = b/sinB = c/sinC=2R
余弦定理: a² = b²+c²-2bccosA b² = a²+c²-2accosB c² = a²+b²-2abcoC cos A = (b²+c² - a²)/2bc cosB = (c²+a² - b²)/2ac cosC = (a²+b² - c²)/2ab
反三角函数: arc sin (-x) = -arc sinx
arc cos (-x) = π-arc cosx
arc tan (-x ) = -arc tanx
勾股定理:a² + b² = c²
Sin x Cos x Tan x Cot x 30˚ (π/6) 45˚ (π/4) 60˚(π/3) 1/2 √3/2 √3/3 √3 √2/2 √2/2 1 1 √3/2 1/2 √3 √3/3 90˚ (π/2) 1 0 无 0 180˚ (π) 0 -1 0 无 270˚(3/2π) 360˚ (2π) -1 0 无 0 0 1 0 无
圆·两点间距离公式:√(x – a)² + (y – b)² = R² (x – a)² + (y – b)² = R²
关于半径r的公式: x² + y² = r²
极限公式: limC = C (C是常数)
n→∞
两个重要极限
sinx 1 x
lim =1 lim(1+ ) = e → lim(1+1/x)²=e x→0 x x→∞ x x→0
1/(2a)·[1/(a+x)+1/(a-x)]=1/(a ² - x²)
导数公式:[f(x)g(x)]f(x)g(x),
[Cf(x)]Cf(x)
(1)kdxkxC(k是常数);
(2)xdxx11C(1);
(3)(4)dxxlnxC; 1dx arctanxC;
1x2(5)11x2dx arcsinxC;
(6)cosxdx sinxC;
(7)(8)(9)sincossinxdx cosxC;
dx2xxsecxdx tanxC;
2cscxdx cotxC; 2dx2(10)(11)(12)secxtanxdx secxC;
cscxC;
cscxcotxdxea
xxdx eC;
(13)xdx
axlnaC;
因篇幅问题不能全部显示,请点此查看更多更全内容