您的当前位置:首页正文

RANSAC讲解

2023-03-02 来源:钮旅网
随机抽样一致性算法(RANSAC) 作者:王先荣

本文翻译自维基百科,英文原文地址是:http://en.wikipedia.org/wiki/ransac,如果您英语不错,建议您直接查看原文。

RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。该算法最早由Fischler和Bolles于1981年提出。 RANSAC的基本假设是:

(1)数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释; (2)“局外点”是不能适应该模型的数据; (3)除此之外的数据属于噪声。

局外点产生的原因有:噪声的极值;错误的测量方法;对数据的错误假设。

RANSAC也做了以下假设:给定一组(通常很小的)局内点,存在一个可以估计模型参数的过程;而该模型能够解释或者适用于局内点。 本文内容 1 示例 2 概述 3 算法 4 参数

5 优点与缺点 6 应用 7 参考文献 8 外部链接

一、示例

一个简单的例子是从一组观测数据中找出合适的2维直线。假设观测数据中包含局内点和局外点,其中局内点近似的被直线所通过,而局外点远离于直线。简单的最小二乘法不能找到适应于局内点的直线,原因是最小二乘法尽量去适应包括局外点在内的所有点。相反,RANSAC能得出一个仅仅用局内点计算出模型,并且概率还足够高。但是,RANSAC并不能保证结果一定正确,为了保证算法有足够高的合理概率,我们必须小心的选择算法的参数。

左图:包含很多局外点的数据集 右图:RANSAC找到的直线(局外点并不影响结果)

二、概述

RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。

RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:

1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。 2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。

3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。 4.然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。 5.最后,通过估计局内点与模型的错误率来评估模型。

这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

三、算法

伪码形式的算法如下所示: 输入:

data —— 一组观测数据

model —— 适应于数据的模型 n —— 适用于模型的最少数据个数 k —— 算法的迭代次数

t —— 用于决定数据是否适应于模型的阀值 d —— 判定模型是否适用于数据集的数据数目 输出:

best_model —— 跟数据最匹配的模型参数(如果没有找到好的模型,返回null) best_consensus_set —— 估计出模型的数据点 best_error —— 跟数据相关的估计出的模型错误

iterations = 0

best_model = null

best_consensus_set = null best_error = 无穷大

while ( iterations < k )

maybe_inliers = 从数据集中随机选择n个点

maybe_model = 适合于maybe_inliers的模型参数

consensus_set = maybe_inliers

for ( 每个数据集中不属于maybe_inliers的点 )

if ( 如果点适合于maybe_model,且错误小于t ) 将点添加到consensus_set

if ( consensus_set中的元素数目大于d )

已经找到了好的模型,现在测试该模型到底有多好

better_model = 适合于consensus_set中所有点的模型参数

this_error = better_model究竟如何适合这些点的度量 if ( this_error < best_error )

我们发现了比以前好的模型,保存该模型直到更好的模型出现 best_model = better_model

best_consensus_set = consensus_set best_error = this_error 增加迭代次数

返回 best_model, best_consensus_set, best_error

RANSAC算法的可能变化包括以下几种:

(1)如果发现了一种足够好的模型(该模型有足够小的错误率),则跳出主循环。这样可能会节约计算额外参数的时间。 (2)直接从maybe_model计算this_error,而不从consensus_set重新估计模型。这样可能会节约比较两种模型错误的时间,但可能会对噪声更敏感。

四、参数

我们不得不根据特定的问题和数据集通过实验来确定参数t和d。然而参数k(迭代次数)可以从理论结果推断。当我们从估计模型参数时,用p表示一些迭代过程中从数据集内随机选取出的点均为局内点的概率;此时,结果模型很可能有用,因此p也表征了算法产生有用结果的概率。用w表示每次从数据集中选取一个局内点的概率,如下式所示: w = 局内点的数目 / 数据集的数目

通常情况下,我们事先并不知道w的值,但是可以给出一些鲁棒的值。假设估计模型需要选定n个点,wn是所有n个点均为局内点的概率;1 − wn是n个点中至少有一个点为局外点的概率,此时表明我们从数据集中估计出了一个不好的模型。 (1 − wn)k表示算法永远都不会选择到n个点均为局内点的概率,它和1-p相同。因此, 1 − p = (1 − wn)k

我们对上式的两边取对数,得出

值得注意的是,这个结果假设n个点都是独立选择的;也就是说,某个点被选定之后,它可能会被后续的迭代过程重复选定到。这种方法通常都不合理,由此推导出的k值被看作是选取不重复点的上限。例如,要从上图中的数据集寻找适合的直线,RANSAC算法通常在每次迭代时选取2个点,计算通过这两点的直线maybe_model,要求这两点必须唯一。

为了得到更可信的参数,标准偏差或它的乘积可以被加到k上。k的标准偏差定义为:

五、优点与缺点

RANSAC的优点是它能鲁棒的估计模型参数。例如,它能从包含大量局外点的数据集中估计出高精度的参数。RANSAC的缺点是它计算参数的迭代次数没有上限;如果设置迭代次数的上限,得到的结果可能不是最优的结果,甚至可能得到错误的结果。RANSAC只有一定的概率得到可信的模型,概率与迭代次数成正比。RANSAC的另一个缺点是它要求设

置跟问题相关的阀值。

RANSAC只能从特定的数据集中估计出一个模型,如果存在两个(或多个)模型,RANSAC不能找到别的模型。

六、应用

RANSAC算法经常用于计算机视觉,例如同时求解相关问题与估计立体摄像机的基础矩阵。

因篇幅问题不能全部显示,请点此查看更多更全内容