您的当前位置:首页正文

2019-2020学年上海市奉贤区初三数学一模(试卷+参考答案)

2023-06-06 来源:钮旅网
2019学年奉贤区调研测试

九年级数学 202001

(满分150分,考试时间100分钟)

考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.

2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题,每题4分,满分24分) 1.已知线段a、b、c,如果a:b:c1(A);

32(B);

31:2:3,那么ab的值是(▲)

cb53(D). ;

3512.在Rt△ABC中,∠C=90°,如果∠A的正弦值是,那么下列各式正确的是(▲)

4(C)

(A)AB=4BC; (B)AB=4AC; (C)AC=4BC; (D)BC=4AC. 3.已知点C在线段AB上,AC=3BC,如果AC(A)

a,那么BA用a表示正确的是(▲)

3a; 4(B)

3a; 4(C)

4a; 3 (D)

4a. 3

4.下列命题中,真命题是(▲)

(A)邻边之比相等的两个平行四边形一定相似; (B)邻边之比相等的两个矩形一定相似; (C)对角线之比相等的两个平行四边形一定相似; (D)对角线之比相等的两个矩形一定相似. 5.已知抛物线yax2… … bxc(a0 0)上部分点的横坐标x和纵坐标y的对应值如下表: 1 3 4 5 … … x y 5 7 27 25 15 2根据上表,下列判断正确的是(▲)

(A)该抛物线开口向上; (B)该抛物线的对称轴是直线x(C)该抛物线一定经过点(1,1;

15); (D)该抛物线在对称轴左侧部分是下降的. 26.在△ABC中,AB=9,BC=2AC=12,点D、E分别在边AB、AC上,且DE//BC, AD=2BD,

以AD为半径的⊙D和以CE为半径的⊙E的位置关系是(▲) (A)外离; (B)外切; (C)相交; (D)内含.

九年级数学试卷- 1 -

二、填空题(本大题共12题,每题4分,满分48分) 7.如果tan3,那么锐角的度数是 ▲ .

8.如果a与单位向量e方向相反,且长度为3,那么a= ▲ .(用单位向量e表示向量a) 9.如果一条抛物线的顶点在y轴上,那么这条抛物线的表达式可以是 ▲ .(只需写一个) 10.如果二次函数ya(x1)2(a0)的图像在它对称轴右侧部分是上升的,那么a的取

值范围是 ▲ . 11.抛物线yx2bx2与y轴交于点A,如果点B(2,2)和点A关于该抛物线的对称

轴对称,那么b的值是 ▲ . 12.已知在△ABC中,∠C=90°,cosA3,AC=6,那么AB的长是 ▲ . 413.已知在△ABC中,点D、E分别在边AB和AC的反向延长线上, 如果AD1,那么

AB3当

AE的值是 ▲ 时,DE∥BC. EC14.小明从山脚A出发,沿坡度为1:2.4的斜坡前进了130米到达B点,那么他所在的位置

比原来的位置升高了 ▲ 米. 15.如图1,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,如果点A'恰好是△ABC的重心,A'B'、A'C'分别与BC交于点M、N,那么△A'MN的面积与△ABC的面积之比是 ▲.

A A' B B' 图1 M D N C O A 图3

B D E C

C' A 图2

16.公元263年左右,我国数学家刘徽发现当正多边形的边数无限增加时,这个正多边形面

积可无限接近它的外接圆的面积,因此可以用正多边形的面积来近似估计圆的面积.如图2,⊙O是正十二边形的外接圆,设正十二边形的半径OA长为1,如果用它的面积来近似估计⊙O的面积,那么⊙O的面积约是 ▲ .

17.如果矩形一边的两个端点与它对边上的一点所构成的角是直角,那么我们就把这个点叫

做矩形的“直角点”.如图3,如果E矩形ABCD的一个“直角点”,且CD=3EC,那么AD:AB的值是 ▲ .

18.如图4,已知矩形ABCD(AB>AD),将矩形ABCD绕点B顺时针旋转90°,点A、D分

别落在点E、F处,联结DF,如果点G是DF的中点,那么∠BEG的正切值是 ▲ .

九年级数学试卷- 2 -

D C

A 图4

B

三、解答题(本大题共7题,满分78分) 19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知函数yy (x1)(x3).

1 O (1)指出这个函数图像的开口方向、顶点坐标和它的变化情况; (2)选取适当的数据填入下表,并在如图5所示的直角

坐标系内描点,画出该函数的图像.

1 x x y … … … …

图5

20.(本题满分10分,每小题满分5分)

如图6,在梯形ABCD中,AB//CD,∠ABC=90°,∠BAD=45°,DC=2,AB=6, AE⊥BD,垂足为点F.

D C (1)求∠DAE的余弦值;

(2)设DCa,BCb,用向量a、b表示AE. A 21.(本题满分10分,每小题满分5分)

如图7,已知AB是⊙O的直径,C是⊙O上一点,CD⊥AB, 垂足为点D,E是BC的中点,OE与弦BC交于点F. (1)如果C是AE的中点,求AD:DB的值;

(2)如果⊙O的直径AB=6,FO: EF =1:2,求CD的长.

22.(本题满分10分,每小题满分5分)

图7

图8-1是一把落地的遮阳伞的侧面示意图,伞柄CD垂直于水平地面GQ.当点P与点A重合时,伞收紧;当点P由点A向点B移动时,伞慢慢撑开;当点P与点B重合时,伞完全张开.已知遮阳伞的高度CD是220厘米,在它撑开的过程中,总有PM=PN=CM=CN=50厘米,CE=CF=120厘米,BC=20厘米. (1)当∠CPN=53°,求BP的长;

(2)如图8-2,当伞完全张开时,求点E到地面GQ的距离. (参考数据:sin53

E M C B P A 九年级数学试卷- 3 - G N E F A M F 图6 C F E E B A D O B 0.8,cos530.6,tan531.3)

C B(P) N F 图8-1 D Q G D Q 图8-2

23.(本题满分12分,每小题满分6分)

已知:如图9,在平行四边形ABCD中,点 E在边AD上,点F在边CB的延长线上,联结CE、EF,CE2DECF. (1)求证:∠D=∠CEF;

(2)联结AC,交EF与点G,如果AC平分∠ECF,

F 求证:ACAECBCG.

24.(本题满分12分,每小题满分4分)

如图10,在平面直角坐标系xOy中,抛物线y点B(5,0),顶点为C.

(1)求这条抛物线的表达式和顶点C的坐标; (2)点A关于抛物线对称轴的对应点为点D, 联结OD、BD,求∠ODB的正切值; (3)将抛物线yC

图9

A E D B x2bxc经过点A(2,-3)和

yx2bxc向上平移t(t>0)

oAC图10

B x个单位,使顶点C落在点E处,点B落在点F处,如果 BE=BF,求t的值.

九年级数学试卷- 4 -

25.(本题满分14分,第(1)小题①满分5分,第(1)小题②满分4分,第(2)小题满分5分)

如图11,已知平行四边形ABCD中,AD=5,AB=5,tanA2,点E在射线AD上,

过点E作EF⊥AD,垂足为点E,交射线AB于点F,交射线CB于点G,联结CE、CF,设

AEm.

(1)当点E在边AD上时,

①求△CEF的面积;(用含m的代数式表示) ②当SDCE4SBFG时,求AE:ED的值;

(2)当点E在边AD的延长线上时,如果△AEF与△CFG相似,求m的值. E A

F 图11 G B A 备用图

B D C D C

九年级数学试卷- 5 -

奉贤区2019学年度九年级数学调研测试参考答案及评分说明

(202001)

一、选择题:(本大题共6题,每题4分,满分24分)

1.C; 2.A ; 3.D ; 4.B ; 5.C ; 6.B . 二、填空题:(本大题共12题,每题4分,满分48分) 7. 60度; 10. a0; 13.

8.

3e;

9. yx21;(等) 12. 8; 15.1:9;

18.1.

11.2; 14.50 ;

1; 416.3;

17.2; 3三、解答题(本大题共7题,其中19-22题每题10分,23、24题每题12分,25题14分,满分78分)

19.解:(1)yx24x3(x2)21.

因为a10,所以该抛物线的开口向下,顶点坐标是(2,1),在它对称轴的左侧部分是上升的, 右侧部分是下降的. ··········································································· (4分) (2)正确列表.(3

正确画出图像(图像略). ···································································· (3分) 20.解:(1)过点D作DH········································ (1分) AB,垂足为点H. ·

x … … 0 -3 1 0 2 1 3 0 4 -3 … … 分)

y ∵AB//CD,∠ABC=90°,∴DH=BC, DC=BH.

∵在Rt△ADH中,∠BAD=45°,又DC=2,AB=6,∴AH=DH=4. ∴AD=AH2BH2································································ (1分) 42. ·

在Rt△DCB中,C90,∴BDDC2BC225.

九年级数学试卷- 6 -

∵AE⊥BD,∴SABD1ABDH21BDAF. 2∴6425AF,∴AF125. ··························································· (1分) 5在Rt△AFD中,AFD90,∴cosDAEAFAD125542310. ·················· (2分) 10即∠DAE的余弦值是310.

10(2)∵DC=2,AB=6,∴DCAB∵DCa,∴AB1. ····························································· (1分) 3········································································· (1分) 3a. ·

∵∠ABC=90°,AE⊥BD,∴DBC在Rt△ABE中,ABE在Rt△DBC中,C∴BEEBA.

BEABDCBCBE. 61. 290,tanBAE90,tanDBC3,BEBC3. ··············································································· (1分) 4∵BCb,∴BE∴AE3·········································································· (1分) b. 43a3·················································································· (1分) b. ·

4CE,BECE.

21. 解:(1)联结CO.∵C是AE的中点,∵E是BC的中点,∴AC∴ACCEBE. ················································································ (1分)

∴AOCCOEBOE60. ···························································· (1分) ∵CD⊥AB,∴OCD30.

设DOa,则CO=BO2a,∴BD3a,ADABBD4a3aa. ········ (2分) ∴AD:DB=1. ························································································· (1分)

3(2)∵E是BC的中点,O是圆心,∴OF∵AB=6,FO: EF =1:2,∴FO=1,BO=3. ∴BFBC,BC······················ (1分) 2BF. ·

BO2FO222,BC················································· (1分) 42. ·

∵CD⊥AB,∴CDBOFB90.又CBDOBF,∴△CBD∽△OBF. (2分) ∴

CD4242CDBC.∴,即CD. ··············································· (1分) 133OFOB九年级数学试卷- 7 -

22.解:(1)联结MN,交CP于点H,

∵PM=PN=CM=CN=50厘米,∴四边形CMPN是菱形. ································ (1分) 1∴MNPC,PH=CH=PC.

2在Rt△PNH中,PNH, 90,∠CPN=53°

∴PHPN•cosCPN500.630(厘米). ··········································· (2分) ∵BC=20厘米, ∴BPCPBC6020,即BP的长是40厘米. ················ (2分) 40(厘米)

····· (1分) GQ,垂足为点R. ·

(2)过点E作EKAC,垂足为点K,过点E作ER1由题意得,四边形CMPN是菱形,MNPC,MN//EK,, CHBC10(厘米)

2∴CMCH,5010,即CK24(厘米). ·········································· (2分)

CFCK120CK∵CH=220厘米,

∴ERKH22024196(厘米). ······················································· (2分) 即当伞完全张开时,点E到地面GQ的距离是196厘米. 23.证明:(1)∵CE2DECF,∴

CECF. ········································ (1分) DECE∵四边形ABCD是平行四边形,∴AD//BC, ∴DECECF. ······· (1分) ∴△EDC∽△CEF. ············································································ (2分)

∴∠D=∠CEF. ··············································································· (2分) (2)∵AC平分∠ECF,∴ECGACB. ∵AD//BC, ∴DACACB.

∴ECGDAC. ········································································ (1分) 又∵∠D=∠CEF,∴△EGC∽△BAC. ·················································· (2分) ∴

CGCE. ················································································· (1分) ACCB又AECE, ················································································· (1分) ∴CGAE,∴ACAECBCG. ···················································· (1分) ACCB

24.解:(1)由题意得,抛物线y代入得42bc255b3, 解得 bc0.x26,5.bxc经过点A(2,-3)和点B(5,0),

c ·············································· (2分)

九年级数学试卷- 8 -

∴抛物线的表达式是yx26x5. ······················································ (1分) 它的顶点C的坐标是(3,-4). ······························································ (1分) (2)∵点A(2,-3)关于抛物线对称轴的对应点为点D,

∴点D的坐标是(4,-3) . ········································································ (1分) ∴OD=OB=5,∴ODBOBD . ·························································· (1分) 过点D作DHOB,垂足为点H,

在Rt△DHB中,DHB∴tanOBD90,DH=3,BH=1,

DH········································································ (1分) 3. ·

BH∴tanODB3,即∠ODB的正切值是3. ················································ (1分)

(3)由题意得,当 BE=BF 时,点E在x轴下方,

由平移可知,CE=BF=t,∴BEt. ·························································· (1分) 设对称轴与x轴的交点为Q,则CQ=4,BQ=2. ··········································· (1分)

在Rt△BEQ中,BEQ ∴(4t)290,EQ2BQ2BE2,

22t2,解得t5. ······························································ (2分) 2即当BE=BF, t的值是

5. 225.解:(1)①∵EF⊥AD,tanA2, AEm,

∴在Rt△AEF中,EFAEtanA2m.∴AFAE2EF25m. ············· (1分) ∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD. 又∵AB=5,∴BFABAF55m. ∵AEAF,∴mBGBFBG5m,即BG5m. ··············································· (1分)

55m∵AD=BC=5,∴CGBCBG25m. ··················································· (1分) SCEF11··········································· (2分) EFCG2m(25m)25mm2.

22②∵BG5m,DE5m,∴BGDE. ·········································· (1分) SDCE1DEEG,S2BFG1BGFG,S2DCE4SBFG,

∴EG4FG, EF:FG3. ··································································· (1分)

九年级数学试卷- 9 -

∵AD∥BC, ∴AE:BGEF:FG3. ······················································· (1分) ∴AE:ED3,即当 SDCE4SBFG时, AE:ED的值是3. ··························· (1分)

(2)当点E在边AD的延长线上时,

∵AEF∽CFG,又∠AEF=∠FGC=90°,∴∠A=∠FCG或∠A=∠CFG.

∵∠A=∠CBF,∴∠CBF=∠FCG或∠CBF=∠CFG. ······································ (1分) 当∠CBF=∠FCG 时,由BGCG5BF,∴2AFm52555,BF, 223·················································· (2分) 5. ·2∴BGAE52,∴m当∠CBF=∠CFG 时,∵CBF在Rt△BCF中,

5BF,∴5AFmBFG∴CFG90,BFG即CF90, AB.

5.

5CFB90,BC5,tanCBF2,∴BF1.∴BM∵BGAE1,∴

m156···················································· (2分) 5. 5综上所述,当AEF∽CFG时,m的值是35或65.

25

九年级数学试卷- 10 -

因篇幅问题不能全部显示,请点此查看更多更全内容