66616111G2=
6161
1200661161061116011111070651006361001601601
14
;168
1i2f0;2g6661611
1611G3=
6161
1160160100001261165100006016016361111661
64
61;1
1i2f0;2g:
NextwedetermineifthemodulespannedbyG1;G2;orG3iscontainedinPm,where7jmbut3m;and5
havesolutionsandtheresultisthatfor7jmbut3m;and5
m;4m;theredonotexist
any4-dimensionalsubmoduleDPmsuchthatj(D)j=9andthentheresultofthelemmafollows.
89;;ifif34jjm
mor5jmbut3
REFERENCES
[1]A.E.Ashikhmin,“GeneralizedHammingweightsforZinProc.IEEEInt.Symp.InformationTheory(Trondheim,4-linearcodes,”
Norway,June1994),p.306.
[2]A.R.Hammons,P.V.Kumar,A.R.Calderbank,N.J.A.Sloane,and
P.Sol´e,“TheZTrans.4-linearityofkerdock,preparata,Goethals,andrelatedcodes,”IEEEInform.Theory,vol.40,pp.301–319,Mar.1994.[3]T.Helleseth,B.Hove,andK.Yang,“Furtherresultsongeneralized
hammingweightsforGoethalsandpreparatacodesoverZ4,”Tech.Rep.R-98-2016,AalborgUniv.,Aalborg,Denmark.
[4]T.HellesethandP.V.Kumar,“ThealgebraicdecodingoftheZcode,”IEEETrans.Inform.Theory,vol.41,pp.2040–2048,4-linear
GoethalsNov.1995.
[5]T.Helleseth,P.V.Kumar,andA.Shanbhag,“Newcodeswiththesame
weightdistributionsastheGoethalscodesandtheDelsarte-Goethalscodes,”Des.,CodesCryptogr.,vol.9,pp.257–266,1996.
[6]P.V.Kumar,T.Helleseth,andA.R.Calderbank,“Anupperbound
forWeilexponentialsumsoverGaloisringsanditsapplications,”IEEETrans.Inform.Theory,vol.41,pp.456–468,Mar.1995.
[7]V.K.Wei,“GeneralizedHammingweightsforlinearcodes,”IEEE
Trans.Inform.Theory,vol.37,pp.1412–1418,Sept.1991.
[8]K.YangandT.Helleseth,“OntheweighthierarchyofPreparatacodes
overZ4,”IEEETrans.Inform.Theory,vol.43,pp.1832–1842,Nov.1997.[9],“OntheweighthierarchyofGoethalscodesoverZTheory,vol.44pp.304–307,Jan.1998.
4,”IEEE
Trans.Inform.NewUpperBoundsonGeneralizedWeights
AlexeiAshikhmin,AlexanderBarg,and
SimonLitsyn,Member,IEEE
Abstract—Wederivenewasymptoticupperboundsonthegeneralizedweightsofabinarylinearcodeofagivensize.Wealsoprovesomeasymptoticresultsonthedistancedistributionofbinarycodes.IndexTerms—Constant-weightcodes,distancedistribution,generalizedweights,linearprogramming.
I.INTRODUCTION
LetCbealinearbinarycodeoflengthnandrateR(C)=
log2jCj=n.ThesupportofasubsetCCisdefinedas
suppC=
e2f1;2;111;ng:ce=1
IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.4,MAY1999wherethelimitiscalculatedoverallsequencesofcodesCofgrowinglengthnandrateatleastR.Weshallalsobeinterestedinthebehavioroftheinversefunction
Rr()=limn!1
supR(C)
wherethelimitiscalculatedoverallsequencesofcodesCofgrowinglengthnandrelativerthweightdr(C)=natleast.
Letusquotethebestknownboundsonr(R)andRr().Below
Hq(x)=xlogq(q01)0xlogqx0(10x)logq(10x)
istheentropyfunctionandHq01
(1)isitsinverse.Thus
Hq:[0;1]![0;1]
and
Hq01
:[0;1]!
:
Further,letq(R)=Hq01
(10R).Ifq=2,weomitthesubscript
andwritesimplyH(1);H01
(1);(1).Alowerexistencebound(the“Gilbert–Varshamov”bound)followsfromaresultin[19].ItisthebestknownasymptoticlowerboundonrandRr.
Theorem1[19]:For0R1;0
2
r(R)gv
r(R)=2
():(2)
Otherproofsofthistheoremaregivenin[7],[8],and[17].
Thefollowingbound(the“Elias,”or“Bassalygo–Elias,”bound)wasprovedin[5]forr=2andin[6]forthegeneralcase.Theorem2[5],[6]:For0R1;0
2
r(R)elr(R)=10(R)r+10(10(R))r+1
(3)Rr()Rel
r()=10H()
(4)
whereisthesmallestrootof
xr+1+(10x)r+1=10:
Thisboundcanbeimprovedinacertainrangeofrates;see[18].
Inparticular,thefollowingtheoremholdstrue.Theorem3[18]:For0R1r(R)
1min
sr01
10up
s(R)
R
10ups(R)(5)
whereup
s(R)andupr0s(R)areanyasymptoticupperboundsons(R)andr0s(R),respectively.
Thentakingr=2,onecanputs=1andusetheMcEliece–Rodemich–Rumsey–Welch(MRRW)bound[14],whichwequoteinthefollowingtheorem.
Theorem4[14]:For0R1;01=2
1(R)lp
1
(R)=min2
(10)0(10)
1+2
1210(
10lp
1(R)
R
10lp1(R)
1259
nR(;)=limn!1
supR(C):
WestartwiththelinearprogrammingboundofMcElieceetal.Theorem5[14]:For0RH();02(10)R;)lp(R;)=2
(10)0H01(R)(10H01(R))1+2
1210(
C(1260IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.4,MAY1999
thatfurnishestheminimumtotheright-handsideof(6)(notethatin(6)isadummyvariablewhosevalueisdetermineduniquelygivenandR).Proposition6:
1;m()=2;m
1;m
=2;m(R):
Proof:Directsubstitution.
H(0)0H0(10)H
+Rup(;)
0;2
(10)0(10)1+2
(15)
suchthat
1
log2AnR01+H()+2H()02q(;;=2)n00(10)H
whereandarearbitrarynumberssatisfying
01=2;
H()0H()10R
(16)
10
p
1021
;
22andq(;;)isgivenby(17)atthebottomofthispage.
Choosingandsothatberestrictedtotheshortestpossibleinterval,onecanprove[13]thatthereexistsanexponentiallylargecomponentoftheweightdistributionfor2[0;lp(R)].Moreover,comparingthiscomponenttothe“binomial”weightdistribution
^i=A
jCj2ni.e.,theweightdistributionofatypicallongcode,onecancheckthat
thistheoremimpliesthefollowingcorollary.
Corollary12[13]:Foreverycodeofsufficientlylargelengthn
lp
andrateR,andany1(R),thereexistsa
2(0;]
suchthat
1
log2Anmax(0;H()+R01)nCorollary10:If2;m(R)1=2,then
lp
(R;)sm(R;)=1(1+R0H()):
wheretheequalityisachievedonlyif=.
LetusanalyzesomeconsequencesofTheorem9.LetR0bethesolutionof(14)
orR0=0:421111:
lp
2;m(R)=1(R)
Proof:FollowsfromProposition6.
q(;;)=H()+
(10)0y(102y)0(10)
2(0y)(100y)+
dy:
(17)
IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.4,MAY19991261
TABLEI
Theorem13:SupposeacodeofrateR0R1,andsufficientlylargelengthnmeetsrelativedistancelp
thelinearprogrammingbound(6),1
(R).Thenforlp1(R)10lpi.e.,isof
1(R)1
nlog2AnH()+R01:(18)
Moreover,everysubintervaloftheinterval[lp
(const)1n+
of1(R);1=2]oflength
;>0,containsacomponenttheweightdistribu-tionsuchthat
1
nlog2An=H()+R01:(19)
Proof:ByTheorem9,if>1;m(lp
1(R))=2;m(R)R(lp1
(R);)Rlp
1+H()01=R+H()01:(20)
TheinequalityonRfollowsbysolving2;m(R)lp
(R)withrespecttoR.Thesecondclaimforeverylp
1
Theorem13(technicaldetailsare1(R)followsfromCorollary12andomitted).
max
0<2
p
(21)
whereup
(R;)isanyupperboundon(R;)
R0=R01+H()+2H()02q(;;=2)
00(10)H
(22)
andq(;;)isdefinedin(17).
Proof:ByTheorem11,forany;satisfying(16)andasin(15),thereexistsaconstant-weightcodeD()ofsizeAnR0andweightn:ThenD()containsapairofcodewordsx;yatadistanceatmostup(R0;)napart.Thesizeofthesupportof(x;y;x+y)equals
jsupp(x;y)j=2n0jx\\yj=n+
dist(x;y)
2:Thiscompletestheproof.
(10):
Thenby(6)wehave=lp
1(R).Further,forthischoiceof;;and;(22)takesontheform
R0=H
0R+1
(see[13];thisisprovedsimilarlytothewayCorollary12isderivedfromTheorem11).Nowwecanrewrite(21)using(14)asfollows:
2(R)lp
1(R)+12sm
=lp1(R)+1lplp
211(R)
=3lp
21(R):lp
1(R)+1lp
lp321(R)
;0R (R);R0R1 (24) wherelp 1(R)andlp(R;)aregivenby(6)and(10),respectively.Bound(24)isbetterthanthepreviouslyknownbounds.For referenceel purposeswegive,inTableI,3 2(24),the2(9),theVl˘adu¸tboundvlEliasbound 2(8),andthelowerGilbert–Varshamovboundgv Tovisualize2(2). theseresults,inFig.1weplotbounds(24),(9),(8),and(2). SincetheboundinProposition16isbetterthantheboundspreviouslyknown,itsapplicationin(5)improvesknownboundsongeneralizedweightoforderrgreaterthan2.Letusillustratethisforr=3.Computingtheboundsin(5)showsthattheminimumisattainedfors=1.Thisgivesthefollowingbound:3(R)33(R)=1(R)+(101(R))3 2 (25) where1(R)isgivenin(6)and32(R)in(24).Bound33(R)isbetterthantheEliasbound(3)for0 InthissectionwepresentanotherwayofusingTheorem11toderiveboundsongeneralizedweights.Webeginwithtwoauxiliarylemmas. 1262IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.4,MAY1999 Fig.1.BoundsonthesecondweightofacodeofrateR. Lemma17:LetWbeaconstant-weightcodeoflengthnandweightw.If0w1w,and jWj min(`;w) M;1MjWj thenthereexist`positionssuchthatatleastMcodewordsofWhaveweightatleastw1onthem. Proof:Wewillfindtheaverageweightofsubwordsofthecodeoverallpossiblechoicesof`positions.LetLf1;2;111;ng;jLj=`.Forc)=acodeword1ifthetotalc2numberW,defineof1’stheinindicatorthepositionsL(cL)byofclettingL(isatleastw1.Wehave min(`;w) X= (c)=jWj: jLj=` HencethereexistsachoiceofLsuchthatthenumberof“good” codewordsisatleastX=(n` ),givingtheclaim.Mc 01 differentnontriviallinearcombinations).Denotethissubsetofcode-wordsbyW: Thesecondauxiliaryresultthatweuseisastandarddouble(“row–column”)countingargumentfortheaveragesupportofrgivenvectorsofacodeD(herewedonotassumelinearity).InthematrixwithcodewordsofDasrowsletuibethenumberofonesintheithcolumn. Lemma18:LetDbeacodeoflengthnandsizeD.Then01 n minsupp(c1;111;cr) 0 r ):Soweget n minsupp(c1;111;cr)0 NowletususethelasttwolemmastogetherwithTheorem11toderivethemainresultofthissection.Beloww=n;w`=n: 1=!n;Theorem19:LetCbeabinarycodeofrateR.LetR0=R0(;;)=R01+H()+2H() 02q(;;=2)00(10)H whereq(;;)isdefinedin(17).Then r(R)33 r(R)=min; max 0min ! r 10 (26) where;;satisfy(15)and(16),and=(R0;;!)isasolutionoftheequation R0+H +(10)H 0H()=0 suchthat!. Proof:Theproofconsistsofthreesteps:takeaconstant-weightcodeWgivenbyTheorem11,applyLemma17onit,andapplyLemma18onthecodeobtainedbyarestrictionofWton0`coordinates. WeneedtopresentrlinearlyindependentcodewordsofCwithsupportgivenbytheright-handsideof(26).Theorem11guaranteesthatthereisasubsetofvectorsofCatadistancewfromacertaincodeworda2C,or,uponshiftingtheentirespacebya,acodeWofconstantweightw.Further,thereisasubsetofWofsizeMthatsatisfiestheweightrestrictionsofLemma17.Bytheremarkafterthislemma,thereisasubsetWWoflogsatisfytheserestrictions,2Mlinearlyindependentcodewordsthatalsoi.e.,areofweightw1onacertainsubsetof`coordinates,1`n.ConsidertherestrictionofWtotheremainingn0`coordinates,denotethiscodebyD,andapplyLemma18onit.Wehave (c min )2D supp(c1;111;cr) 01n0` 0 ;111;c c[Dr0(D0ui)r] i=1 =(n0`) (D0ui)r i=1 n[-convexfunctionsi=1 0`uiof=uD(w0w1):Summationtermsin(27)arei.Finally,theright-handsideof(27)issymmetricinui.InvokingLagrangemultipliersnowimpliesthatitattainsmaximumforui=D(w0w1)=(n0`),andthatthe IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.4,MAY19991263 TABLEII Fig.2.BoundsonthethirdweightofacodeofrateR. maximumisstrict.Henceweget (c min )2D supp(c1;111;cr)(n0`)10 w0w1n0`: Thuswehaveprovedtheexistenceofrlinearlyindependentcode-wordsofCwithsupportatmost `+(n0`) 10 w0w1n0`: Thiscompletestheproof. 因篇幅问题不能全部显示,请点此查看更多更全内容