您的当前位置:首页正文

四川省仁寿县2020_2021学年高二数学下学期期末模拟考试试题理

2023-02-02 来源:钮旅网
四川省仁寿县2020-2021学年高二数学下学期期末模拟考试试题 理

共4页.满分150分.考试时间120分钟.

注意事项:

1.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.

2.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 3.所有题目必须在答题卡上作答,在试题卷上答题无效. 4.考试结束后,将答题卡交回. 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题

目要求的.

1.已知i为虚数单位,复数z2i1ai,aR,若z为纯虚数,则a( ) A.

11 B. C.2 D.2 222.某学校决定从该校的2000名高一学生中采用系统抽样(等距)的方法抽取50名学生进行体质分析,现将2000名学生从1至2000编号,已知样本中第一个编号为7,则抽取的第26个学生的编号为( ) A.997 B.1007 C.1047

D.1087

3.对两个变量y和x进行回归分析,得到一组样本数据:x1,y1,x2,y2,......,xn,yn,则下列说法中不正确的是( )

A.由样本数据得到的回归方程ybxa必过样本中心x,y B.残差平方和越小的模型,拟合的效果越好

C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好

D.若变量y和x之间的相关系数为r0.9362,则变量y和x之间具有线性相关关系

4.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、 乙两人的平均成绩分别为x,y,下列说法正确的是( ) A.xy,且乙比甲的成绩稳定 C.xy,且甲比乙的成绩稳定

B.xy,且乙比甲的成绩稳定 D.xy,且甲比乙的成绩稳定

5.2021年电影春节档票房再创新高,其中电影《唐人街探案3》和《你好,李焕英》是今年春节档电影中最火爆的两部电影,这两部电影都是2月12日(大年初一)首映,根据猫眼票房数据得到如下统计图,该图统计了从2月12日到2月18日共计7天的累计票房(单位:亿元),则下列说法中错误的是( )

理科试题 第 1 页 共 11 页 1

A.这7天电影《你好,李焕英》每天的票房都超过2.5亿元 B.这7天两部电影的累计票房的差的绝对值先逐步扩大后逐步缩小 C.这7天电影《你好,李焕英》的当日票房占比逐渐增大 D.这7天中有4天电影《唐人街探案3》的当日票房占比超过50%

6.如图所示的程序框图,若输入x的值为2,输出v的值为16,则判断框内可以填入( ) A.k≤3? B.k≤4? C.k≥3?

D.k≥4?

7.5人站成一排,若甲、乙彼此不相邻,则不同的排法种数共有( ) A. 72 B.144 C.12

D.36

8.苏格兰数学家科林麦克劳林(ColinMaclaurin)研究出了著名的Maclaurin级数展开式,受到了世界上顶尖数学家的广泛认可,下面是麦克劳林建立的其中一个公式:

x2x3x4ln(1x)x234(1)n1n1xnn,试根据此公式估计下面代数式

224242353ln3.414=1.23)

(1)(2)nn(可能用到数值ln2.414=0.881,(n5)的近似值为( )

A.3.23 B.2.881 C.1.881 D.1.23 9.函数fxex(其中e为自然对数的底数)的图象大致是( ) 21xA. B. C. D.

110.已知2x的二项展开式中二项式系数之和为64,则下列结论正确的是( )

xA.二项展开式中各项系数之和为37 C.二项展开式中无常数项

B.二项展开式中二项式系数最大的项为90x2 D.二项展开式中系数最大的项为240x3

3n 理科试题 第 2 页 共 11 页 2

11.已知函数fx是函数fx的导函数,对任意x0,的是( )

A.2f3f B.

63,f(x)f(x)tanx0,则下列结论正确2f3f C.2f3f D.f3f 636443x1,7x0212.已知函数f(x),g(x)x2x,设a为实数,若存在实数m,使2lnx,exef(m)2g(a)0,则实数a的取值范围为( )

A.[1,) B.[1,3] C.(,1][3,) D.(,3] 二、填空题:本大题共4小题,每小题5分,共20分. 请将答案填在答题卷中的相应位置. 13.曲线yx及yx2x0围成的平面区域如图所示,向正方形OACB中随机投

入一个质点,则质点落在阴影部分区域的概率为__▲___

1i(i是虚数单位)是方程x22xc0的一个根,则实数c___▲___ 1i315.已知函数yf(x)的定义域为(,3),且yf(x)的图像如右图所示,记yf(x)的导函数为

214.复数1yf'(x),则不等式xf'(x)0的解集是____▲___

16.若函数fxe2x图象在点x0,fx0处的切线方程

x为ykxb,则kb的最小值为___▲___

三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤. 17.(本小题10分)已知函数f(x)x3x. (1)求曲线yf(x)在(1,f(1))处的切线方程; (2)求曲线yf(x)过点(2,6)的切线方程.

18.(本小题12分)

某企业有A,B两个分厂生产某种产品,规定该产品的某项质量指标值不低于120的为优质品.分别从A,B两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:

3 理科试题 第 3 页 共 11 页 3

(1)根据频率分布直方图,分别求出B分厂的质量指标值的中位数和平均数的估计值;

(2)填写列联表,并根据列联表判断是否有99%的把握认为这两个分厂的产品质量有差异?

19.(本小题12分)某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:

(1)请用最小二乘法求出y关于x的回归直线方程(结果保留两位小数);

(2)现从2012—2018年这7年中抽出三年进行调查,记年利润增长-投资金额,设这三年中2(万元)的年份数为X,求随机变量X的分布列与期望.

理科试题 第 4 页 共 11 页 4

参考公式:bxxyyxynxyiiiii1nnxxii1n2i1nxi12inx2,aybx.参考数据:

xyii17i359.6,xi2259..

i1720.(本小题12分)已知函数f(x)(2x1)lnxx1. (1)求函数g(x)f(x)xlnx的最值; (2)求证:f(x)1.

21.(本小题12分)某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率均为

2,乙笔试部分每个环节通过的概率依次为3311,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节4322331都必须参与,甲面试部分每个环节通过的概率依次为,,乙面试部分每个环节通过的概率依次为,,

3442若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求乙未能参与面试的概率;

(2)记甲本次应聘通过的环节数为X,求X的分布列以及数学期望;

(3)若该校仅招聘1名在职教师,试通过概率计算,判断甲、乙两人谁更有可能入职.

22.(本小题12分)已知函数f(x)(x2)eax2ax(aR,e为自然对数的底数) (1)若x1是f(x)的极值点,求a的取值; (2)若f(x)只有一个零点,求a的取值范围.

高2019级仁寿县第四学期期末模拟试卷

一、选择题

1.C 2.B 3.C 4.A 5.D 6.A 7.A 8.B 9.C 10.D 11.C 12.B 二、填空题

理科数学参考答案

x21311(,)(0,1)2e 13.3 14.2 15.22 16.

三、解答题

217.解:(1)由已知得f(x)3x3,则f(1)0,所以切线斜率

k0,···························1分

理科试题 第 5 页 共 11 页

5

因为f11312,所以切点坐标为

3(1,2),··········································

···········2分 所以所求直线方程为y20, 故曲线yf(x)在x1处的切线方程为

y20.··········································

·············3分 (2)由已知得f(x)3x3,设切点为

2(x0,x033x0),·······································

············4分

x033x063x023,即2x036x020,得x00或3, 则

x02所以切点为(0,0)或(3,18),切线的斜率为3或

24,············································

·····8分

所以切线方程为y3x或y1824(x3) 即切线方程为3xy0或

24xy540·······································

·····················10分

18.解:(1)B分厂的质量指标值;

由100.008100.016100.0260.5,则B的中位数为

120······································2分

B的平均数为

950.081050.161150.261250.31350.161450.04119.2·········6分

(2)22列联表:

理科试题 第 6 页 共 11 页 6

·································

··············································7分

由列联表可知K2的观测值为:

nadbc20029507150K29.22696.63510010079121abcdacbd22···············

···················11分

所以有99%的把握认为两个分厂的产品质量有差

异.················································12分

19.解:(1)x4.555.566.577.5)(677.48.18.99.611.1)6,y8.3

77ˆb359.6768.31.57,225976ˆ8.31.5761.13,·································a·······5分 故y关x的回归直线方程为:

ˆ1.57x1.13·······································y·····················6分 (2)由表格可知,20122018年这7年中 年份 2012 1.5 2013 2 2014 1.9 2015 2.1 2016 2.4 2017 2.6 2018 3.6 X X的可能取值为1,2,

3················································································7分

2112C2C51C2C54P(X1)P(X2),,33C77C77 理科试题 第 7 页 共 11 页 7

3C52P(X3)3······························10分

C77可得:

E()1231747215··················77·············12分

20.解:(1)由题可知

g(x)2xlnx1······································

····························1分

所以g(x)22lnx,当x(0,)时,g(x)0,g(x)单调递减;当x(,)时,g(x)0,g(x)单调递增,所以

1e1e12g(x)最小值g()1··································

ee································4分 (

2

f(x)12xlnxlnxx,·······························

···························8分

易得

(2xlnx)min2e,(lnxx)max1,

2xlnx21lnxxe所以,得证

f(x)1········································

··············12分 方法二:f'(x)2lnx113,x(0,),令h(x)2lnx3,x(0,), xxh'(x)212x1220,故h(x)在(0,)上单调递xxx增.············································5分

又h(1)20,h()1ln4ln12e0,又h(x)在(0,)上连续, 48

理科试题 第 8 页 共 11 页

112lnx30.h(x)0f'(x)0x0(,1)使得0,即,00x02(*)·····························7分

f'(x),f(x)随x的变化情况如下:

x (0,x0) x0 0 (x0,)  ↗ f'(x) f(x)  ↘ 极小值 f(x)minf(x0)(2x01)lnx0x01. 由(*)式得lnx013,代入上式得 2x02f(x)minf(x0)(2x01)(1313)x012x0. 令t(x)2x13,x(1,1), 2x022x022x22t'(x)即

1(12x)(12x)1t(x)20(,1)上单调递减.t(x)t(1),又t(1)1,. ,故在222x2x2f(x0)1f(x)1.··································

···············································12分

21.解:(1)若乙笔试部分三个环节一个都没有通过或只通过一个,则不能参与面试,故乙未能参与面试的概率

12111132112111P.······················

43243243243224·········3分

(2)X的可能取值为0,1,2,3,4,5,

111111122,22,PX1C1PX0PX2C, 3332733933421811131721122, PX3C334233424227131172113122PX4C3, 342423342542311PX5.································

3429 理科试题 第 9 页 共 11 页

9

33232232··················································7分 则X的分布列为:

X P 故

0 1 2 92 3 4 5 1 271 187 2717 541 9EX012171717912345.···················279182754927························9分

1131522(3)由(2)可知,甲成为在职教师的概率PC, 甲39334218乙成为在职教师的概率P乙12112313. 243448因为P甲P乙,所以甲更可能成为该校的在职教

师··················································12分 22.解:(1)

f(x)(x1)(ex2a),···································

···································1分 当a的极值

点······························································································3分 所以

e时,x10,exe0;x10,exe0,此时f(x)0恒成立,则x1不是函数f(x)2eea(,)(,)···································

22················································4分

(2)f(x)(x2)(eax)只有一个零点,显然是x2,所以分为两种情况

xex2第1种情况:满足ax0,此时

x 理科试题 第 10 页 共 11 页 10

e2a2··········································

···········6分

xxxg(x)eaxg(x)ea; eax0第2种情况:无解,令,

11g()ea10,g(a)eaa20(,a)x①当a0时,g(x)0,g(x)单调递增a,故在a上存在0使得

1g(x0)0;········································

·············································

····8分

x②当a0时,方程eax0显然无

解;·······························································9分

③当a0时,g(x)0解得xlna,当x(,lna)时,g(x)0,g(x)单调递减;当x(lna,)时,g(x)0,g(x)单调递增,则g(x)ming(lna)aalna0,即1lna0,所以

0ae·········································

·············································

···········11分 综上所述:

e2a[0,e){}2······································

··········································12分

理科试题 第 11 页 共 11 页 11

因篇幅问题不能全部显示,请点此查看更多更全内容