好期刊,SCI
2711
Finite-TimeAttitudeTrackingControlofSpacecraft
WithApplicationtoAttitudeSynchronization
HaiboDu,ShihuaLi,andChunjiangQian
Abstract—Thisnoteinvestigatesthefinite-timeattitudecontrolproblemsforasinglespacecraftandmultiplespacecraft.Firstofall,afinite-timecontrollerisdesignedtosolvefinite-timeattitudetrackingproblemforasinglespacecraft.Rigorousproofshowsthatthedesiredattitudecanbetrackedinfinitetimeintheabsenceofdisturbances.Inthepresenceofdis-turbances,thetrackingerrorscanreacharegionaroundtheorigininfinitetime.Then,basedontheneighborrule,adistributedfinite-timeattitudecontrollawisproposedforagroupofspacecraftwithaleader-followerar-chitecture.Underthefinite-timecontrollaw,theattitudesynchronizationcanbeachievedinfinitetime.
IndexTerms—Attitudecontrol,attitudesynchronization,finite-timecon-trol,spacecraft.
以往的
properties[3],[14].Sofar,tothebestofauthors’knowledge,there
有限时isnofinite-timecontrolresultaboutattitudetrackingcontrolfora
singlespacecraftexceptin[15].In[15],thestandardterminalsliding间没有modecontroltechniquewasemployed.Unfortunately,thecontrol针对姿lawof[15]hasasingularityproblemasin[16],[17].Inaddition,
态跟踪fortheattitudecoordinationcontrolofmultiplespacecraft,itmaybe
问题desirabletoachieveattitudesynchronizationinfinitetime.
Inthistechnicalnote,wefocusondesigningafinite-timeattitude
trackingcontrollawforasinglespacecraftandapplyingittosolveco-operativeattitudeproblemformultiplespacecraft.Firstofall,byusingthefinite-timecontrolmethod,anewcontinuousfinite-timeattitudetrackingcontrollawisproposed.Differentfrom[15],thereisnosin-gularityprobleminourcontrollaw,sincehereweuseanotherkindoffinite-timecontroltechnique,i.e.,thetechniqueofaddingapowerintegrator[18].ByconstructingasuitableLyapunovfunction,thefi-nite-timeconvergenceforthetrackingerrorsystemcanbeprovenintheabsenceofdisturbances.Inaddition,arigoroustheoreticalanalysisfordisturbancerejectionperformanceisalsogiven,whichbuildsare-lationshipbetweencontrolparametersandtheboundofsteadytrackingerrors.Basedontheresult,wecangivearigorousexplanationwhyfi-nite-timecontrolsystemscanofferabetterdisturbancerejectionprop-erty.Abovetheseresultsarethemaincontributionsofthistechnicalnote.Secondly,asanapplicationofpreviousdevelopedresults,basedontheneighborrule,adistributedfinite-timecontrollawisproposedforagroupofspacecraftwithaleader-followerarchitecture.Undertheproposedfinite-timecontrollaw,theattitudesynchronizationcanbeachievedinfinitetime.Notethatin[13],basedonslidingmodecontrolmethod,adistributeddiscontinuousfinite-timecontrollawwasalsode-signedforagroupofspacecraftwithadynamicleader.Differentfrom[13],thecooperativefinite-timecontrollawproposedinthistechnicalnoteiscontinuous.
II.PRELIMINARIESANDPROBLEMFORMULATION
A.KinematicsandDynamicsofSpacecraftAttitude
Inthistechnicalnote,theorientationofeachspacecraftwithre-specttotheinertialframeisdescribedintermsoftheModifiedRo-driguezParameters(MRPs)[19].Let=tan(=4)2R3,02<<2,representtheMRPsforthespacecraft,whereistheEuleraxisandistheEulerangle.Givenavectorv=[v1;v2;v3]T,thesymbols(1)denotesa323skew-symmetricmatrix,thatis,s(v)=[0;v3;0v2;0v3;0;v1;v2;0v1;0].
Remark1:NotethatMRPshaveageometricsingularitywhenapproaches62.Asin[1],thestabilityanalysisofthistechnicalnoteisreferredtotheattitudesystemdescribedbymodifiedRodriguespa-rameters.Similarly,thecontinuityoftheproposedcontrollawisalsoreferredtotheattitudecontrolsystemdescribedbymodifiedRodriguesparameters.
UsingtheMRPs,theattitudekinematicsanddynamicsofthespace-craftaregivenby[19]
_=G()!;J!_=s(!)J!++M(t)
不同于
文献15,本文是没有奇点的理论性知识点不同于文献13,本文是连续的
I.INTRODUCTION
Inrecentyears,theattitudecontrolofarigidspacecraftandatti-tudecoordinationcontrolofmultiplespacecrafthaveattractedagreatdealofinterest.Theinterestismotivatedbyitsmanydifferenttypesofapplications,suchassatellitesurveillance,pointingandslewingofaircraft,formationflying,space-basedinterferometry,etc.
Ononehand,theattitudecontrolproblemofasinglespacecraftcanusuallybeclassifiedintoattitudetrackingproblemandattitudestabilizationproblem[1]–[3].Here,inthistechnicalnote,wefocusonattitudetrackingcontrolproblem.Recently,toimprovetheperfor-mancesoftheclosed-loopsystem,manynon-linearcontrolmethods,suchasslidingmodecontrol[4],optimalcontrol[5],adaptivecontrol[8],outputfeedbackcontrol[6],[7],havebeenemployed.
Ontheotherhand,theattitudecoordinationcontrolofmultiplespacecrafthasgainedincreaseattentionmorerecently.Thecoordi-nationcontrolisoftencatalogedascentralizedcoordinationcontrolanddecentralizedcoordinationcontrol.Usually,thedecentralizedcoordinationcontrolachievesmorebenefits,suchasgreaterefficiency,higherrobustness,andlesscommunicationrequirement[9].Con-sideringthesebenefits,manydistributedcooperativeattitudecontrolalgorithmshavebeenreportedin[9]–[13],tonamejustafew.
相比以Notethatmostoftheexistingattitudecontrollawsforattitude往的控trackingcontrolandattitudecoordinationcontrolareasymptotically
stablecontrollaws,whichmeansthattheconvergencerateisat
制方bestexponentialwithinfinitesettlingtime.Obviously,thecontrol法,有lawswithfinite-timeconvergencearemoredesirable.Besidesfaster限控制convergencerates,theclosed-loopsystemsunderfinite-timecontrol
usuallydemonstratehigheraccuracyandbetterdisturbancerejection
的优点
ManuscriptreceivedJune18,2010;revisedDecember18,2010;acceptedMay23,2011.DateofpublicationJune13,2011;dateofcurrentversionNovember02,2011.ThisworkwassupportedbytheNaturalScienceFoun-dationofChina(61074013),ProgramforNewCenturyExcellentTalentsinUniversity(NCET-10-0328),SpecializedResearchFundfortheDoctoralProgramofHigherEducationofChina(20090092110022),andtheScientificResearchFoundation,GraduateSchoolofSoutheastUniversity.RecommendedbyAssociateEditorP.Tsiotras.
H.DuiswiththeSchoolofAutomation,SoutheastUniversity,Nanjing,210096,China(e-mail:cyy2dhb@yahoo.cn).
S.LiiswiththeSiPaiLou2#,SchoolofAutomation,SoutheastUniversity,Nanjing210096,China(e-mail:lsh@seu.edu.cn).
C.QianiswiththeDepartmentofElectricalandComputerEngineeringTheUniversityofTexasatSanAntonio,SanAntonio,TX78249-0669USA(e-mail:chunjiang.qian@utsa.edu).
DigitalObjectIdentifier10.1109/TAC.2011.2159419
(1)
where!2R3istheangularvelocityofthespacecraftwithrespecttotheinertialframeexpressedinthebodyframe,J2R323and2R3aretheinertiaandthecontroltorqueofspacecraft,M(t)=[M1(t);M2(t);M3(t)]Tistheboundedexternaldisturbancevector,andG()=(1=2)[((10T)=2)I30s()+T]withI3beingthe323identitymatrix.ForthematrixG(),thefollowingpropertiesareknown[1]:
1+TT
G()!=!;G()GT()=
4T
1+T
42
I3:
0018-9286/$26.00©2011IEEE
2712IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.56,NO.11,NOVEMBER2011
Forthesakeofstatement,inthefollowing,letd(t)=
T01
[d1(t);d2(t);d3(t)]=JM(t).
Assumption1:Theexternaldisturbancessatisfyjdi(t)jl<+1,i=1,2,3,wherelisaknownconstant.B.ControlObjectives
Inthistechnicalnote,themaincontrolobjectiveistodesignafinite-timeattitudetrackingcontrollawforasinglespacecraftdescribedbysystem(1).Underthefinite-timecontrollaw,thedesiredattitudecanbetrackedinfinitetimeintheabsenceofdisturbances.Inthepresenceofdisturbances,thetrackingerrorscanreacharegionaroundtheorigininfinitetime.Asanapplicationofpreviousresults,thenextcontrolobjectiveistodesignadistributedfinite-timeattitudecontrollawforagroupspacecraftwithaleader-followerarchitecture.C.SomeLemmas
_=f(x),f(0)=0;x2Rn,Lemma1:[14]:Considersystemx
wheref(1):Rn!Rnisacontinuousfunction.Supposethereexistsacontinuous,positivedefinitefunctionV(x):U!Rdefinedonan
_(x)+c(V(x))0openneighborhoodUoftheoriginsuchthatV
onUforsomec>0and2(0;1).Thentheoriginisafinite-timestableequilibriumofsystemx_=f(x)andthefinitesettlingtimeT
10
satisfiesTV(x(0))=c(10).IfU=RnandVisradiallyunbounded,theoriginisagloballyfinite-timestableequilibrium.Lemma2:[18]:If0
Lemma3:[18],[20]:Foranyx2R;y2R,c>0,d>0,jxjcjyjdc=(c+d)jxjc+d+d=(c+d)jyjc+d.
Lemma4:[20]:Foranyxi2R,i=1;...;n,andarealnumberp2(0;1],(jx1j+111+jxnj)pjx1jp+111+jxnjpn10p(jx1j+111+jxnj)p.
A.Finite-TimeAttitudeTrackingControlLawDesignintheAbsenceofDisturbances
Theorem1:Considerthesinglespacecraftsystem(1)withM(t)0andsupposethereisnosingularityfortheinitialrelativeattitude.Ifthecontroltorqueischosenas1=0k11+eTe4p2=p01J(vp+k20s(!)J!e)bb+JRd!_d+Js(v)Rd!d(3)
wherek3>0
p2101=p+3
+k3;
1+p11+p
2101=pk2k120pk2
2101=p+3p2101=p
+k3+3
1+pk2
1
attitudecanbetrackedinfinitetime.
Proof:Theproofprocedurecanbedividedintotwosteps.First,vistakenasavirtualinputandisdesignedsuchthatereacheszeroinfinitetime.Then,thecontrollawisdesignedsuchthatthevirtualcontrolvcanbetrackedinfinitetime.
Step1:VirtualInputvDesign.
ChooseacandidateLyapunovfunctionasV0=(1=2)eTe.
_0=eTG(e)v=Alongthetrajectoryofsystem(2),wehaveV
((1+eTe)=4)eTv.Takingv=0k2e1=pasthevirtualinputandbyLemma4,oneobtains
_0=0k2V=01+eTe
4k2d
ei0
4i=13
3i=1d=22
ei
III.FINITE-TIMEATTITUDETRACKINGCONTROL
FORASINGLESPACECRAFT
Inthissection,wefocusonsolvingfinite-timeattitudetrackingproblemforasinglespacecraft.Letd,!ddenotethedesiredattitudeandthedesiredangularvelocity,respectively.Asin[6],[7],inordertofacilitatethecontrollerdesign,thedesiredtrajectoryd(t)iscon-structedtoavoidthekinematicsingularityassociatedwiththeMRPs_dareassumedtobebounded.Inwhatfollows,tosolvetheat-and!d,!
titudetrackingproblem,asin[4],[19],definee=[e1;e2;e3]T2R3astherelativeattitudeerrorbetweentheactualattitudeandthedesiredattitude,where
01
e=d=
k2d=2d=22V04whered=1+1=p.ByLemma1,weobtainV0(t)reacheszeroinfinitetime.Step2:ControlLawDesign.ThecandidateLyapunovfunctionisconstructedasV=
3V0+i=1Vi,whereV0isthesameasthatinStep1,andVi=1201p1+p2101=pk2v1=pv3p201=p(sp0vi)ds;d(
T
T
01)+(10dd)+
TTT1+dd+2d2s(d)
3vi=0k2ei;i=1;2;3:v
v(4)(sp0
:
ItfollowsfromPropositionsB1andB2in[18]thatb
Definev=[v1;v2;v3]T=!0Rd!d2R3astherelativean-b
istherotationmatrixfromthedesiredgularvelocityerror,whereRd
breferenceframetothebodyreferenceframe.TherotationmatrixRdb
isaproperorthogonalmatrixandisgivenbyRd=R(e),whereTT22
+8s(e)=(1+eTe)2.Then,R(e)=I3+4((10ee)=(1+ee))s(e)
therelativekinematicequationisgivenasin[4]andtherelativedy-namicequationisgivenasin[5],[8]
3p201=pvi)ds,i=1,2,3,aredifferentiable,positivedefiniteandproper.UsingtheresultsinStep1yieldsT_0=1+eeV43i=13eivi1+eTe+43i=13ei(vi0vi):(5)
e_=G(e)v;
bb
!_d0Js(v)Rd!d+M(t)Jv_=s(!)J!+0JRd
p3p1=p3
ByLemma2,weobtainei(vi0vi)2101=pjeijjvi0vij,i=1,
p3p
2,3.Forthesakeofbrevity,leti=vi0vi,i=1,2,3.AccordingtoLemma3,wehave
(2)
01b
,v=!0Rd!d.Therefore,tosolvethefinite-timewheree=d
trackingproblem,weonlyneedtodesignacontrollawsuchthate!0,v!0infinitetime.
3
ei(vi0vi)2101=pjeijjij1=p2101=p
pjeijdjijd
+1+p1+pofthistechnicalnote,ifx=[x;...;x]isavectorandpis
afractionalpower,thenx=[x;...;x].
1Throughout
IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.56,NO.11,NOVEMBER20112713
i=1,2,3.Substitutingthisinequalityinto(5)resultsin
p1+p+2
1+eTe4101=p
3i=1
d
Puttingtogether(6),(9),andnoticingthatjeijd=jeij(1+p)=p=ei,dd
jij=i,weobtain
_00k202101=pVedi
3i=1
p2101=p+3_V0k20
1+pjij:
d
1+eTe4101=p
3m=1
jemjd
3m=1
11+p1+eTe4(6)
++
2
101=p
+3p2
+3
1+pk2
1
1p1+eTe4201=p
jmjd
3
TakingthederivativeofVialongsystem(2)yields_i=0V
1
3p
@(vi)@tvv
3p101=p
(sp0vids)
20
1+p
2101=pk2i=1
i
i:(10)
1+p2101=pk2
+
20
1p201=p
ii;1+p101=p2k2
3vi
1
i=1;2;3(7)
Ifthecontroltorqueischosenas(3),thenaccordingto(2)andthe
2=p01T
definitionofi,weobtain,i=1,2,i=0k1((1+ee)=4)i
3.Substitutingthisexpressioninto(10)andbythegainsconditionofTheorem1,wehave
_0k3V
43i=1
dei
wherei=@vi=@t.Accordingtothedefinitionof
3p3p3p
@(v1)@(v2)@(v3)
;;@t@t@tT
p@e0k2
and(2),wehave
k3
043i=1
di:
(11)
=
@t=
p
G(e)v:0k2
Next,wewillshowthatV(t)willreachzeroinfinitetime.From(4),
bycalculationandLemma2,weget
Vi
:
1
2020
1p1+p
2101=pk2
2i;
3p3p201=p
jvi0vijjvi0vij
BythedefinitionofG(e),wehave
1+e0e0e
21+e0e0e
21+e0e0e
2G(e)v=
12v1+(e1e20e3)v2+(e1e3+e2)v3v2+(e2e30e1)v3+(e1e2+e3)v1v3+(e1e30e2)v1+(e2e3+e1)v2
1
1p1+pk2
i=1;2;3:(12)
222
Noticingthat((1+e10e20e3)=2)v1
TT
((1+ee)=2)jv1j,(e1e20e3)v2((1+ee)=2)jv2j,
T
(e1e3+e2)v3((1+ee)=2)jv3j,thenweobtain
T
[G(e)v]1((1+ee)=4)(jv1j+jv2j+jv3j),where[G(e)v]idenotestheithelementofvectorG(e)v,i=1,2,3.Byasimilaranal-3pp
ysis,wegetj@(vi)=@tjk2((1+eTe)=4)(jv1j+jv2j+jv3j),i=1,2,3.Substitutingthisinequalityinto(7)resultsin
3322
Hence,V=V0+3i=1Vic1i=1ei+i=1i,wherec1=1+p
.ByLemma4,wegetmax1=2;1=(201=p)k2
V
d=2
d=2c1
3i=1
dei
3
+
i=1
di
:(13)
_iV
12101=pk2
1+eTe3
(jv1j+jv2j+jv3j)jvi0vijjij101=p
41201=p
+i(8)i;i=1;2;3:1+p1101=p20p2k2
UsingLemmas2and3,foranyi,m=1,2,3,wehave
3
jvmjjvi0vijjij101=p
2101=pjvmjjij1=pjij101=p
332101=p(jijjvm0vmj+jijjvmj)
2101=p(2101=pjijjmj1=p+k2jijjemj1=p)2
101=p
k2(2101=p+k2)pd2101=p
jij+jmjd+jemjd:
1+p1+p1+pDenote=k3=(8c1)>0.Thenitfollowsfrom(11)and(13)
dd_+Vd=20(k3=8)3qi0(k3=8)3thatVi=1i=1!i0.
Noticing0 Remark3:Ifthefractionpowerp=1,thefinite-timecontrollaw(3)willreducetothefollowingcontrollaw:=0k1 1+eTe4J(v+k2e)0s(!)J! bb +JRd!_d+Js(v)Rd!d d=2 Substitutingthisinequalityinto(8)yields1+eTe_Vi 41+ 1+p2101=p2101=p+k23pd jij+ k21+p(1+p)k2 3m=1 3m=1 (14) jmj 201=p d jemjd + 1 20 1p1+p 2101=pk2 i i; i=1;2;3:(9) 2 (1+1=k2+k3).Thiscon-wherek3>0,k21+k3;k1k2 trollawcanbeconsideredasakindofconventionalbacksteppingcon-trollaw.Underthiscontrollaw,thedesiredattitudecanbeasymptot-icallytrackedandtheconvergencerateforthetrackingerrorsystem(2)isexponential,whichcanbeestimatedbythefollowingprocedure.Substitutingp=1intotheproofprocedureofTheorem1,weobtain_+V0,whichimpliesthatV(t)V(t0)e0(t0t),whereV 2714IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.56,NO.11,NOVEMBER2011 =k3=(8c2)>0,c2=max1=2;1=(k2 2).Accordingtothedefi-nitionofV,wehaveeTe1 3V=2+(2k22)(vi+k2ei)2 i=1 3eT e+123 2e2i(2k22)vi 0 i=1 i=1 3+3v2i (8k22)1(eTe+vTv)=1kx(t)k2 (15) where1=minf1=3;1=(8k2 2)g,x(t)=[e1;e2;e3;v1;v2;v3]T.Ontheotherhand,by(15),weget V(t0)e(t0)T e(t0) 33 +1(2k22)v2+ 2e2i(t0)3v2 i(t0) ii=1 i=1 3+(t0) (8k22)2kx(t0)k 2 where2=max5=3;7=(8k2 2).Asaresult kx(t)k V(t)V(t0)e0(t0t ) 11 2 kx(t0)ke0(=2)(t0t)1 :Comparedwiththisconventionalbacksteppingcontrollaw(14),theclosed-loopsystem(2)underthefinite-timecontrollaw(3)willofferabetterdisturbancerejectionproperty. B.AnalysisofDisturbanceRejectionPerformanceinthePresenceofDisturbances Inthissubsection,wewillconsiderthecaseofexistingexternaldis-turbances. Theorem2:Considerthesinglespacecraftsystem(1)underthefi-nite-timecontrollaw(3)andsupposethereisnosingularityfortheinitialrelativeattitude.IfAssumption1issatisfied,thenthetrackingerrorwillconvergetotheregionQinfinitetime,where :je4pl2 1=p p=(20p) Q= (eT;vT)ijc3(2p01)k1+; 2pk3 1=(20p)jvijc4 4pl21=p (2p01)k1+i=1;2;3:(16) 2pk3 ;andc1=maxf1=2;1=(201=p)k1+2p g,cp (2p01)33=(1+p)) p=(1+p)3=2c1(3(1+p)=+ 1=2p c4=k2(2) 1=2p +2 p0 12k1+2 p1c11 =2p3 (1+p)=(2p01) +3 3=(1+p) 1=(1+p) : Proof:TheanalysisprocedureissimilartothatoftheproofofTheorem1,excepttheappearanceofthedisturbances.jdi(t)jlandsubstitutingthecontrollaw(3)intoV _Noticing ,followingasimilarprocedurebetween(4)and(11)intheproofofTheorem1,wehave _333 V 0k34edi 0k3i=1 4di +h jij 201=p (17) i=1 i=1 whereh=l=(201=p)2101=pk1+2p .Thefollowingproofcanbedi-videdintothreesteps.Define 1=(eT;T 3 3 ): ed i + di i=1 i=1 <3 (1+p)=(2p01) +3 3=(1+p) 8h(1+p)=(20p) k3 ; 2= (eT;T):V(t) (1+p)=(2p01) +3 3=(1+p) 2=d 8h 2p=(20p) k3 where=[)2=1;2;3]T.First,weprovethefactthat_(xT;vT V <0once1.However,thisfactcannotguaranteetheregion1istheattractiveregion.Thereasonisthatitispossiblethestatesmaycapefrom1afterenteringit,sincein1,V _es-<0isnolongerguaran-teed.However,wecanfindalargerregion2whichcontains1,i.e.,12,suchthat2istheattractiveregion.Second,weprovethattheregion2isanattractiveregionforanyinitialstate(eT(0);T(0))and3canbereachedinfinitetime,whichmeansthereexistsat1,suchthat(eT(t);T (t))22for8t>t3finitetime 1.Third,wegiveanesti-mationforsteadytrackingerrors. Step1:Assuming(eT;T)2=1,i.e. 33(1+p)=(20p) edi+ d i 3 (1+p)=(2p01) +3 3=(1+p) 8h i=1 i=1 k3 thefollowinganalysisCase1:3idcanbe(1+dividedp)=(2p0into1) twocases. (8h=k3)(1+p)=(20p)since=1i3 Ononehand,1 3jij 201=p 3 = (jijd)(201=p)=d i=1 i=1 3(2p01)=(1+p)3 (20p)=(1+p) di (18) i=1 whichresultsin3d 3 i 3 (p02)=(2p01) ( jij201=p)(1+p)=(2p01): i=1 i=1 Itfollowsthisinequalitythat: k333 3 8di 0h jij 201=p jij201=p i=1 i=1 i=1 2 k(1+p)=(2p01)01 3(p02)=(2p01) 383jij201=p 0h: i=1 (19) Ontheotherhand,noticing 3 di3(1+p)=(2p01)(8h=k3)(1+p)=(20p) i=1 IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.56,NO.11,NOVEMBER20112715 andbyLemma4,weobtain 3 jij 201=p 3 = (di)(201=p)=di=1 i=1 3 (201=p)=d di 3 8h(2p01)=(20p) i=1 k3 : Substitutingthisinequalityinto(19)leadstokd h3i=1jij201=pCase2:30_d.Itfollows(1+p)=from(2p01) (17)(8h=kthatV(t)3=<830.i=1i0 3)(1+p)=(2If3i=1di=10p)i<3(1+ip)<=(23p01) (8h=k3)(1+p)=(20p)1impliesthat3,then(eT3=(1+(1+p)=(20p);T)2=by(18),wehavei=13ed i>3p)201=p (8h=k33=(1+3)p)(8h=k3)(2.pIn0addition, 1)=(20p).Substitutingthelasti=1jij twoinequalitiesinto(17)_0(k3=8)nsultsofCasei=1edi0(k3=4)3d leadsto<0.Hence,bytheVre- 1andCase2,weknowi=1Vi _<0once(eT;TStep2:Inthesequel,wewillprovethatV_<0once)(2e=T1. ;T)2= 2.Actually,fromStep1,weonlyneedtoprovethat1isasubsetof2.Theproofisgivenasfollows.Forany(eT;T)21,by(13) 33 V d=2 cd=12 edi + di i=1 i=1 (1+p)=(20p) (1+p)=(2p01) +3 3=(1+p) 8hk3 =md=2: Thatistosay(eT;T)22,i.e.,12.Hence,once(eT;T)2= 2,thenV_<0.Since2isalevelsetoftheLyapunovfunction, thenthereexistsafinitetimet31,suchthat(eTT V(t) 1 .Step3:BythedefinitionofVinTheorem1,whentt3 1,weconcludethat jei(t)j eT(t)e(t)=2V0(t) 2V(t)p=(20p) p 2mc3 8hk3 i==11,,2,2,3,3.whereByLemmac3isgiveninTheorem2.Next,letusestimatevi2,js0v3 ij2101=pjsp0v3ipj1=pi(t), ,thenjspv3ipj21=p01js0v3i jp 0 .Ifviv3 i,bythepreviousinequalityandthedefinitionofVi,wehaveVi(2102p=(2p01)k1+p)(vi0v3i)2p .Inthecaseofv2 Vjv)V(t)i issimilar.Since 1i(t)0v3 i(t)j2[(p01=2)k1+,2pit] 1follows=(2p)m1from=(2p)thisinequalitythat whentt31.Com-biningthisinequalityandtheestimationforei(t),itcanbeconcluded thatwhentt3 1 jvi(t)jjv3i(t)j+jvi(t)0v3 i(t)j 1=(20p) =k2je1i=p j +jvi(t)0 v3 i(t)j c4 8h k3 wherec4isgiveninTheorem2. Remark4:Ifp=1,itcanbeproventhatthetrackingerrorswillconvergetoregionMinfinitetimeundertheconventionalbackstep-pingcontrollaw(14)byasimilarproof,whereM= (eT;vT):jeijc5 8l (k22k3);jvijc6 8l (k22k3);i=1;2;3:(20) andc2k2=maxf1=2;1=(k2 2)g,c5= 2(3+33=2)c2,c6=22(3+33=2)c2.Thefollowingremarkwillshowthatthefi-nite-timecontrollaw(3)hasabetterdisturbancerejectionpropertythantheconventionalbacksteppingcontrollaw(14). Remark5:OnemayarguethatthroughadjustingcontrolgainskQ2or/andkandM,3tobelargeenough,bothconvergenceregions,i.e.,canberenderedtobeassmallasdesired.Neverthe-less,duetocontrolsaturationconstraint,wecannotselectk2andk3tobesufficientlylarge.Inthiscase,fortheproposedmethodhere,anadditionalparameter,i.e.,thefractionalpowerp,canbeadjustedtoenhancethedisturbancerejectionperfor-mancewithoutincreasingk2andk3tobesufficientlylarge.For example,supposing0<4pl21=p=(2p01)k1+2p k3<1issatisfied, i.e.,selectingk1=(1+p) 2suchthatk2>4pl21=p=(2p01)k3 ,wecanselectptoapproximateto2suchthatthepowerexpres-sion1=(20p)inQisbiggerenoughthan1,whichcanmake 4pl21=p=(2p01)k1+p 1=(20p) 3k28l=k3k2 2,i.e.,Qismuch smallerthanM. IV.FINITE-TIMEATTITUDESYNCHRONIZATION FORMULTIPLESPACECRAFT Withoutlossofgenerality,agroupofnspacecraftareconsidered.Let0=f1;2;...;ng.Theattitudekinematicanddynamicequationsoftheithspacecraftaregivenas _i=G(i)!i;Ji!_i=s(!i)Ji!i+i;i20 (21) where!i2R3istheangularvelocityoftheithspacecraftwithrespect totheinertialframeexpressedinthebodyframeoftheithspacecraft,Ji2R323andi2R3aretheinertiaandcontroltorqueoftheithspacecraft,respectively.Here,thecontroltorqueifortheithspace-craftistobedesignedbasedonthelocalinformationfromitselfanditsneighbors. AssumethatthecommunicationtopologyamongnspacecraftismodeledbyadirectedgraphG(A)=fV;E;Ag.V=fv1A;...=;[nag]isi;i=2theRsetn2nofnodes,EV2VisthesetofedgesandijistheweightedadjacencymatrixofthegraphG(A)withnon-negativeadjacencyelementsaij.Ifthereisanavailableinformationchannelfromspacecraftjtospacecrafti,thena=0.Themagnitudeofanonzeroaij>0,otherwiseaijijcanrepresents/de-terminesthestrengthoftheconnectionbetweenspacecraft.Moreover,weassumethataii=0foralli20.ThesetofneighborsofnodeiisdenotedbyNi=fj:aij>0g.Here,asinTheorem5of[21],thefollowingassumptionaboutgraphG(A)isgiven. Assumption2:Thecommunicationtopologygraphhasahierar-chicalstructure.Assumev1istheleaderandallnodesofdirectedgraphGfVv(A)canbeclassifiedintothefollowingsubsets:V0=fv1g;V1=j:2vV:vjonlyreceivesinformationfromv1g;...;Vqjonlyreceivesinformationfromnodesin[q01 =fvj2 isnon-emptyforalll=1;...;q.Moreover,[q l=0Vlg,whereVl 01g;...;0Vl=0Vl=V0=fq=fj:vj2qg.Obviously[q.DenoteTheorem3:Considerthemultiplespacecraftsysteml=00l=0. (21)underAs-sumption2.Ifthecontroltorqueiischosenas i=0s(!i)Ji!i+i aijJiRij!_j+Jis(!ij)Ri j!j j2N 0k11+T ijijJi!p2=p01 4ij +kp2ij;i=2;...;n(22) 2716IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.56,NO.11,NOVEMBER2011 Fig.1.Responsecurvesunderfinite-timecontrollaw(3). Fig.2.Responsecurvesunderconventionalbacksteppingcontrollaw(14). 0;ifj2Naij=0;01 =ij, 1=j2Naij;ifj2Naij=0,ijii !ij=!i0Rj!j;Rj=R(ij),theparametersk1;k2;parethesameasthatofTheorem1,thentheattitudesynchronizationcanbeachievedinfinitetime. Proof:Theproofismainlybasedonarecursiveargument.We 01 firstconsiderallthenodesinV1.Definei1=i1,!i1= i !i0R1!1;8i201.BasedonTheorem1,itcanbeeasilyproventhati!1,!i!!1;8i201,infinitetimeundertheproposed 3 suchthati(t)=1(t),controllaw.Hence,thereexistsatimeT1 33 !i(t)=!1(t);8i201;8tT1.AfterT1,asimilarproofleadstoi!1,!i!!1;8i202,infinitetime,whichimpliesthatthere 333+T1>T1suchthati(t)=1(t),!i(t)=isatimeinstantT2 33 !1(t);8i202;8tT2+T1.Byinduction,weconcludethattheattitudesofallspacecraftachievesynchronizationinfinitetime. Remark6:Obviously,thecontrollaw(22)isdistributedbecauseitiscomposedonlyofthespacecraft’sowninformationandthatofitsneighbors.Inaddition,thefinitesettlingtimeT3forachievingattitudesynchronizationdependsonthenumberoflevelsinthehierarchicalstructureandthemaximumfinitesettingtimeforeachlevel.AssumethemaximumfinitesettingtimeforlthlevelisTl3;l=1;2;...;q, wherei= 33 thenT3=T1,whereTl3=maxfTi;i20lgandTiis+111+Tq thetrackingtimeforithspacecraft. Example1:Considerattitudetrackingproblemforasinglespacecraft(1).Theinertiamatrixisgivenas[2]:J=[100;00:630;000:85]kg1m2.Theinitialstatesaresetas:(0)=[0:5;0;0:2]T;!(0)=[0;0;0]Trad=s.Thedesired d )=d(t)tan(d(t)=4),withattitudetrajectoryisselectedasp(tT d(t)=[cos(0:4t);sin(0:6t);2]andd(t)=rad. Tohaveafaircomparisonofthedynamicperformancesbetweenthefinite-timecontrollaw(FTCL)(3)andtheconventionalbacksteppingcontrollaw(CBCL)(14),thecontroltorquesarelimitednottoexceed10N1m.FortheFTCL(3),selectp=7=5,k1=14,k2=2:3.FortheCBCL(14),thegainsofarechosenask1=15,k2=2:2. Intheabsenceofdisturbances,theconvergencetimecomparisonisgiveninTableI.Whenthereexistexternaldisturbances,thesteadytrackingerrorscomparisonisalsoshowninTableIandtheresponsecurvesarepresentedinFigs.1–2,wherethefollowingexternaldistur-bancesM(t)=[0:3sin(t);0:4cos(1:5t);0:5sin(2t+1)]Tareadded.Obviously,theclosed-loopsystem(1)underthefinite-timecontrollaw(3)demonstratesafasterconvergenceandabetterdisturbancerejec-tionproperty. IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.56,NO.11,NOVEMBER20112717 TABLEI THECOMPARISONSOFCONVERGENCETIME,DISTURBANCEREJECTION PROPERTYBETWEENTHEFTCL(3)ANDTHECBCL(14) Convergencetime:thetimeafterwhichjej<103,alwaysholds. ,jvj<10,i=1,2, [16]Z.Man,A.P.Paplinski,andH.R.Wu,“ArobustMIMOterminal slidingmodecontrolschemeforrigidroboticmanipulators,”IEEETrans.Autom.Control,vol.39,no.12,pp.2464–2469,Dec.1994.[17]K.B.ParkandJ.J.Lee,“Commentson“ArobustMIMOterminal slidingmodecontrolschemeforrigidroboticmanipulators”,”IEEETrans.Autom.Control,vol.41,no.5,pp.761–762,May1996. [18]C.QianandW.Lin,“Acontinuousfeedbackapproachtoglobalstrong stabilizationofnonlinearsystems,”IEEETrans.Autom.Control,vol.46,no.7,pp.1061–1079,Jul.2001. [19]M.D.Shuster,“Asurveyofattituderepresentations,”J.Astron.Sci., vol.41,no.4,pp.439–517,1993. [20]G.Hardy,J.Littlewood,andG.Polya,Inequalities.Cambridge, U.K.:CambridgeUniv.Press,1952. [21]Y.SunandL.Wang,“Consensusofmulti-agentsystemsindirected networkswithnonuniformtime-varyingdelays,”IEEETrans.Autom.Control,vol.54,no.7,pp.1607–1613,Jul.2009. V.CONCLUSION Basedonthecontinuousfinite-timecontroltechnique,afinite-timeattitudetrackingcontrollawhasbeendesignedforasinglespace-craftandadistributedfinite-timeattitudesynchronizationalgorithmhasalsobeendevelopedforagroupspacecraft.Futureworkincludesextendingtheresultsinthistechnicalnotetocaseswhentheangularve-locityisunmeasurableandthereexistcommunicationdelaysbetweenspacecraft. PadéDiscretizationforLinearSystemsWithPolyhedralLyapunovFunctions FrancescoRossi,PatrizioColaneri,andRobertShorten REFERENCES [1]P.Tsiotras,“Stabilizationandoptimalityresultsfortheattitudecontrol problem,”J.Guid.,ControlDynam.,vol.19,no.4,pp.772–779,1996.[2]J.T.WenandK.Kreutz-Delgado,“Theattitudecontrolproblem,” IEEETrans.Autom.Control,vol.36,no.10,pp.1148–1162,Oct.1991. [3]S.Li,S.Ding,andQ.Li,“Globalsetstabilisationofthespacecraft attitudeusingfinite-timecontroltechnique,”Int.J.Control,vol.82,no.5,pp.822–836,2009. [4]G.XingandS.A.Parvez,“Nonlinearattitudestatetrackingcontrol forspacecraft,”J.Guid.,ControlDynam.,vol.24,no.3,pp.624–626,2001. [5]W.Luo,Y.C.Chu,andK.V.Ling,“Inverseoptimaladaptivecontrol forattitudetrackingofspacecraft,”IEEETrans.Autom.Control,vol.50,no.11,pp.1639–1654,Nov.2005. [6]H.Wong,M.S.deQueiroz,andV.Kapila,“Adaptivetrackingcontrol usingsynthesizedvelocityfromattitudemeasurements,”Automatica,vol.37,no.6,pp.947–953,2001. [7]M.R.Akella,“Rigidbodyattitudetrackingwithoutangularvelocity feedback,”Syst.ControlLett.,vol.42,no.4,pp.321–326,2001. [8]Z.ChenandJ.Huang,“Attitudetrackinganddisturbancerejectionof rigidspacecraftbyadaptivecontrol,”IEEETrans.Autom.Control,vol.54,no.3,pp.600–605,Mar.2009. [9]W.RenandR.W.Beard,DistributedConsensusinMultivehicle CooperativeControl:TheoryandApplications.Berlin,Germany:Springer,2007. [10]J.R.LawtonandR.W.Beard,“Synchronizedmultiplespacecraftro-tations,”Automatica,vol.38,no.8,pp.1359–1364,2002. [11]A.AbdessameudandA.Tayebi,“Attitudesynchronizationofagroup ofspacecraftwithoutvelocitymeasurements,”IEEETrans.Autom.Control,vol.54,no.11,pp.2642–2648,Nov.2009. [12]Z.Meng,W.Ren,andZ.You,“Decentralisedcooperativeattitude trackingusingmodifiedRodriguezparametersbasedonrelativeattitudeinformation,”Int.J.Control,vol.83,no.12,pp.2427–2439,2010. [13]Z.Meng,W.Ren,andZ.You,“Distributedfinite-timeattitudecontain-mentcontrolformultiplerigidbodies,”Automatica,vol.46,no.12,pp.2092–2099,2010. [14]S.P.BhatandD.S.Bernstein,“Finite-timestabilityofcontinuous autonomoussystems,”SIAMJ.ControlOptim.,vol.38,no.3,pp.751–766,2000. [15]E.JinandS.Zhao,“Robustcontrollersdesignwithfinitetimecon-vergenceforrigidspacecraftattitudetrackingcontrol,”Aerosp.Sci.Technol.,vol.12,no.4,pp.324–330,2008. Abstract—ThistechnicalnotehasbeenmotivatedbytheneedtoassessthepreservationofpolyhedralLyapunovfunctionsforstablecontinuous-timelinearsystemsundernumericaldiscretizationofthetransitionmatrix.Thisproblemariseswhendiscretizinglinearsystemsinsuchamannerastopreserveacertaintypeofstabilityofthediscretetimeapproximation.Ourmaincontributionistoshowthatacontinuous-timesystemanditsPadédiscretization(ofanyorderandsampling)alwaysshareatleastonecommonpiecewiselinear(polyhedral)Lyapunovfunction. IndexTerms—Discretization,Lyapunovfunction,stabilityoflinearsystems. I.INTRODUCTION Theinvestigationofthepropertiesoflinearsystemswhenpassingfromthecontinuous-timeanalysistothediscrete-timeonehasbeensubjectofparticularattentionintheliteratureofcontroltheory.Forlineartime-invariant(LTI)systems,thisprocedureisalmostcompletelyunderstood,andformsafundamentalbasis,bothforthedesignofcon-trolsystems,andfornumericalsimulation. Recently,inthecontextofthestudyofswitchedlinearsystems,sev-eraltechnicalnoteshaveconsideredtheproblemofdiscreteapproxi-mationstocontinuous-timeswitchedlinearsystems[1]–[4].Thetheoryofswitchedlinearsystemsisarelativelynewfieldofresearchwheretheknowledgeofthesharedpropertiesbetweencontinuous-timeand ManuscriptreceivedJune14,2010;revisedDecember01,2010;acceptedJune22,2011.DateofpublicationJune30,2011;dateofcurrentversionNovember02,2011.ThisworkwassupportedinpartbytheItalianNationalResearchCouncil(CNR)andbyScienceFoundationIrelandundergrantPIAward07/IN.1/1901.RecommendedbyAssociateEditorH.Ito. F.RossiiswiththeLabLSIS,UniversitéPaulCézanne,Marseille,France(e-mail:francesco.rossi@lsis.org). P.ColaneriiswiththePolitecnicodiMilano,DipartimentodiElettronicaeInformazione,Milan,Italy(e-mail:colaneri@elet.polimi.it). R.ShorteniswiththeNationalUniversityofIreland,HamiltonInstitute,Maynooth,Co.Kildare,Ireland(e-mail:robert.shorten@nuim.ie). Colorversionsofoneormoreofthefiguresinthistechnicalnoteareavailableonlineathttp://ieeexplore.ieee.org. DigitalObjectIdentifier10.1109/TAC.2011.2161028 0018-9286/$26.00©2011IEEE 因篇幅问题不能全部显示,请点此查看更多更全内容