您的当前位置:首页正文

《圆锥的体积》导学预案

2021-01-15 来源:钮旅网

  一、说教材

  圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体、圆柱体的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积的。内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系、提高几何知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识技能解决实际问题的能力。

  教学目标是:

  1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

  2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。

  教学重点是:掌握圆锥体积的计算方法。

  教学难点是:理解圆锥体积公式的推导过程。

  二、说教法

  根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过情境感知并进行猜想,再通过操作验证,从中提取数学问题,自己总结归纳出圆锥体积的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。

  三、说学法

  本节课学习适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。

  四、说教学流程

  为了更好的突出重点,突破难点,我以动手操作、观察猜想、实验求证、讨论归纳法实现教学目标;教学中充分利用几何的直观,发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

  1、创设情境,提出问题

  出示近似圆锥形的沙堆,接着让学生根据情境提出他们想知道的知识,很多学生都想知道沙堆的体积有多大,从而导出课题“圆锥的体积”。让学生自己提出问题,发现问题,激发了学生探索解决问题的强烈愿望。

  2、探索实验,得出结论

  a、动手操作

  把一个圆柱形木料的上底削成一点,让学生观察削成的圆锥体与原来的圆柱体有什么关系.要求先标出上底的圆心点,不改娈下底面,注意安全。培养学生初步的空间观念和动手操作能力。

  b、观察猜想

  观察、比较圆柱体与圆锥体。突破知识点(1)“等底等高”;

  让学生猜测圆柱体积与它等底等高的圆锥体积的关系,突破知识点(2)圆锥体积比与它等底等高的圆柱体积小、圆锥体积是与它等底等高的圆柱体积的1/2、圆锥体积是与它等底等高的圆柱体积的1/3;设想求圆锥体积的方法,学生独立思考后交流讨论,给学生提供了联想和交流的空间,培养了他们的创新能力。

  c、实验求证

  学生动手实验,小组合作探究圆锥体积的计算方法,(1)用天平称圆锥体和与它等底等高的圆柱体木料的质量;(2)把圆锥体浸装有水的圆柱形水槽里量、算出体积;(3)用装沙或装水的方法进行实验。这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。

  通过学生演示、交流、讨论,得出圆锥体积的计算公式:

  圆柱的体积等于与它等底等高的圆锥体积的3倍;

  圆锥体积等于与它等底等高的圆柱的体积的1/3.

  圆锥体积=底面积 高 1/3

  这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。

  3、应用结论,解决问题

  (1)以练习的形式出示例1。

  例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  通过这道练习,巩固了所学知识。

  (2)基础练习:求下面各圆锥的体积。

  底面面积是7.8平方米,高是1.8米。

  底面半径是4厘米,高是21厘米。

  底面直径是6分米,高是6分米。

  这道题是培养学生联系旧知灵活计算的能力,形成系统的知识结构。

  (3)出示例2。

  在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是6米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?

  通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。

  (4)操作练习。

  让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。

  4、全课总结,课外延伸。

  让学生说说这节课的收获,并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样激发了学生到生活中继续探究数学问题的兴趣。

因篇幅问题不能全部显示,请点此查看更多更全内容