您的当前位置:首页正文

《分数乘分数》中遗憾

2021-04-27 来源:钮旅网

  听课随感:

  以上是徐老师在进行《分数乘分数》这个教学内容中展开算理探索的主要步骤的教学片段。他的教学思路独特,简洁。出示几个简单的分数,让学生自由组合成乘法算式并尝试计算,在有了多种方法算出答案后进行横向比较,得出“分子相乘的积做分子,分母相乘的积作分母”与“化成小数进行计算”最后的得数是相同的,由此说明“分子相乘的积做分子,分母相乘的积作分母”这种方法是可以计算。然后又通过纵向比较得出,“分子相乘的积做分子,分母相乘的积作分母”的方法计算分数乘法不仅适合全部这种类型的计算,而且比较简便。紧接着徐老师就放手让学生通过画图来验证这种方法为什么可行,给予学生明确的探究目的,提供充足的探究时间与空间。与前一节课有着截然不同的探索步骤。

  探索步骤的不同,是因为今天有了前一节课做铺垫。课一开始徐老师就展示了整数与分数的乘法,然后就很自然地引出分数乘分数的一道题,让新知识与旧知识相联系,在学生原有的知识和经验上,发展新知识,促进知识的有效迁移,促使学生形成优化的认知结构。分数乘法的计算方法就水到渠成,但为什么可以这样来计算,恰恰是学生所不理解的,所以这才是本节课的重点与难点。如何突破难点,徐老师采用了最简单而有效的方法——“画图验证”,从中也让学生有探究的需求,让我们刚刚得到的抽象知识用直观的图画,形象地展示、说明。这是一个学生主动探索、解释新知的过程,是思维的火花不断碰撞的过程。在这个过程中,教师不断引导着学生进行反复的验证,说明,解释,然后归纳,概括,最终反映出“分子相乘的积做分子,分母相乘的积作分母”算法的真正含义,不光突破了难点,同时培养了学生的探索兴趣和探究精神。最可贵的是,在懂得这个算理后,徐老师引着学生又回到起点,看看整数成分数的乘法,原来它也适用这种方法,使学生更加了解“分子相乘的积做分子,分母相乘的积作分母”是反映计算分数乘法普遍规律的一般计算法则。

  虽然学生要学的知识是前人发现的,书上写的明明白白,但对于学生来说,仍是全新的,未知的,需要每个人再现类似的创造过程来形成,因为学生对数学知识的学习并不是简单的接受,而必须以再创造的方式进行;作为数学教师也不能简单地将知识直接灌输给学生,而是要让学生经历这个再创造的过程。由此可见,在新知生长点的教学环节中,留下适当“时空”,让学生进行创造活动,很必要。

因篇幅问题不能全部显示,请点此查看更多更全内容