您的当前位置:首页正文

ABAQUS

2022-10-02 来源:钮旅网
ABAQUS

操作篇

1、界⾯数据显⽰框过⼩,数据⽆法看清怎么办?

解决办法:1)进⼊主菜单viewpoint选择Viewpoint Annotation Options

2)效果⽐较:

说明:主菜单中Viewpoint选项中还可以修改显⽰界⾯的形式,在模型上添加注释(Annotation),修改数据显⽰框的位置、⼤⼩、形式等等。2、如何查看节点或单元在模型中的位置?

解决办法:1)在主菜单View栏下选中Toolbars,进⽽选中coustomize编辑框,选中“Group Display”则在主界⾯⽣成Group Display快捷操作框。

位置

3、分析结果中,显⽰的位移过⼤或者过⼩应该如何调整?解决⽅法:在界⾯左边快捷栏点击“common options”

4、梁截⾯定义

** Section: Section-1-ADSET3 Profile: Profile-1

*Beam Section, elset=ADSET3, material=MATERIAL-2,temperature=GRADIENTS, section=L0.12275, 0.12275, 0.007944, 0.007944 (a,b,t1,t2)-0.883444,-0.468537,0.

5、定义表⾯时“SNEG”“SPOS”表达的含义?*Surface, type=ELEMENT, name=SURF-1_SURF-1_SNEG, SNEG

*Surface, type=ELEMENT, name=SURF-1_SURF-1_SPOS_1, SPOS(SNEG/ SPOS的作⽤是什么?)

解答:Refers to the sides of the elements in the surface.⽤来指定选择的接触⾯。 EG:

6、RigidBody 约束和刚体部件的差别在于:

刚体部件同部件相关联,RigidBody 约束同组装实体中的区域相关联。简单地讲,刚体部件建模时的整个部件在以后的分析中都将保持为刚体,⽽RigidBody 约束可以是某⼀部件组装后的实体中的某⼀区域,相对刚体部件具有更⾼的灵活性。此外,刚体部件的参考点必须在Part 模块下建⽴,Assembly 模块下建⽴的参考点⽆法应⽤到刚体部件,但是RigidBody 约束的参考点可以在Assembly 模块下建⽴。 另外,值得⼀提的是,刚体部件可以在模型树中编辑修改为变形体,这⼀操作同增删RigidBody 约束的作⽤是⼀致的。Abaqus 提供了多种不同的⽅式帮助⽤户简洁⾼效地进⾏刚体模拟,包括:(1)离散刚体;(2)解析刚体;(3)RigidBody约束;

事实上,⽆论采⽤何种⽅式模拟刚体,只要在Abaqus中能够实现,其计算精度和效率都应该是接近的,因为在⼀个完整的模拟分析过程中,主要的计算精度和效率毫⽆疑问是由变形体所控制的,当然,不排除部分机构动⼒学分析中全部部件均采⽤刚体模拟的情形。但是,不同的刚体模拟⽅式还是具有⼀定差异的:

(1)离散刚体:离散刚体在⼏何上可以是任意的三维、⼆维或轴对称模型,同⼀般变形体是相同的,唯⼀不同的是,在划分⽹格时离散刚体不能使⽤实体单元,必须在Part模块下将实体表⾯转换为壳⾯,然后使⽤刚体单元划分⽹格。

(2)解析刚体:在计算成本上解析刚体要⼩于离散刚体,但是解析刚体不能是任意的⼏何形状,⽽必须具有光滑的外轮廓线。⼀般⽽⾔,如果可以使⽤解析刚体的话,使⽤解析刚体进⾏模拟是更为合适的。

(3)RigidBody约束:除了在Part模块下直接声明所建模型是离散刚体或解析刚体外,Abaqus在Interaction模块还提供了RigidBody约束⽤于模拟刚体性质。RigidBody约束实际上是将组装部件中某⼀区域的运动强制约束到参考点上,⽽在整个分析过程中不改变该区域内各点的相对位置。7、部件⽣成以后,若需要更改部件的尺⼨,应该怎么办?

解答:在Part模块下,选择主菜单的“Feature”“Edit”,选择需要更改尺⼨的部件,进⾏编辑。

通过“Edit Feature”编辑框,更改部件尺⼨,⽽后点击“Feature”“Regenerate”,重新⽣成部件。

注意:①重新⽣成部件以后,与部件对应的实体将会随之改变;但是重新⽣成部件以后,⽹格划分信息将会被删除!②由inp⽂件导⼊的模型,⽆法⽤此⽅法更改部件尺⼨。8、问题篇

1、出现错误“Error in job Job-freq: Three factorizations in a row failed. Check the model. It is possible that the model contains the kinematic coupling definition set up in a way that a degree offreedom has neither mass nor stiffness.”(三因⼦分解连续失败了。检查模型。有可能模型包含运动学耦合定义设置,⼀个⾃由度既没有质量和刚度。)

解决办法:在求解结构动⼒特性时出现这类错误,最常见的⼀个原因就是没有定义结构⾃重或者结构重⼒定义不正确。1)在Load模式下定义结构⾃重

2)在Step模式下,在动⼒分析前添加静⼒分析步

说明:检查结构⾃重加载是否正确的⽅法,即在加载重⼒的分析步中,结构是沿着重⼒⽅向变形的,如下图:(注意:结构⾃重设置是否正确,直接决定了结构动⼒特性计算的准确性)

2、出现错误“ERROR: TOO MANY ATTEMPTS MADE FOR THIS INCREMENT”,MSG ⽂件中的警告信息“***WARNING:OVERCONSTRAINT CHECKS: NODE 4656 INSTANCE PART-1-1 ON THESLA VE SURFACE AND CORRESPONDING NODE 17 INSTANCE PART-2-2 ON THE MASTER SURFACE HA VE EQUAL PRESCRIBED DISPLACEMENTS NORMAL TO THE CONTACTSURFACE. SINCE THIS MAKES THE CONTACT CONSTRAINT REDUNDANT, THE CONTACT STATUS AT THE SLA VE NODE IS CHANGED FROM CLOSE TO OPEN.CONTACT P AIR (ASSEMBLY_SET-64_CNS_,ASSEMBLY_SURF-1) NODE P ART-1-1.3402 IS OVERCLOSED BY 31.8295 WHICH IS TOO SEVERE.”解答:这往往是因为接触⾯的法线⽅向定义反了。定义刚体和shell的surface时,要注意选择外侧。

EG:对于这样⼀个导线与斜地⾯的接触问题,在定义地⾯接触⾯的时候会直观的将地⾯刚体的内侧⾯定义为接触⾯,从⽽导致错误;

由于地⾯是⼀个离散刚体,⽽刚体在定义surface时,只能选择外侧。故⽽,正确的做法是将外侧⾯即\"Purple\"⾯定义为地⾯与导线的接触⾯。

补充问题:对于下⾯的平地⾯接触问题,地⾯上侧和下侧是否均可定义为与导线的接触⾯?

解答是否定的,这种情况下只能选择“Brown”⾯作为与导线的接触⾯。

分别选择\" Brown \"和\"Purple\"⾯作为与导线的接触⾯,结果发现:选择\" Brown \"⾯作为接触⾯时,分析能够成功运⾏;⽽选择\"Purple\"⾯作为与导线的接触⾯时,分析不能成功,出现与上⾯相同的问题,即“CONTACT P AIR (ASSEMBLY_SET-64_CNS_,ASSEMBLY_SURF-1) NODE P ART-1-1.3402 IS OVERCLOSED BY 31.8295 WHICH IS TOO SEVERE.”说明:平地⾯情况下,默认导线同侧的地⾯接触⾯为外侧⾯。

数据处理

1、origin中图层的使⽤⽅法:

①在主菜单“graph”下,选择“layer management”进⼊图层管理编辑框,在这⾥可以添加或者删除图层,可以设置图层的⼤⼩(为⽅便⽐较,各图层易设置成同样⼤⼩)

②在某⼀图层画图:⾸先,选中需要画图的数据;⽽后,点击绘图窗⼝中需要绘图的图层,在主菜单选中“graph”“add plot to layer”选择相应的线形就可在图层中绘制图形。

调整图层:新添加的图层往往会出现与原来图层错开的现象,如何调整?

⾸先,调整坐标轴,双击图形正中央,进⼊“layer property”编辑框,调整新图层坐标轴距离左边及顶部的距离(调节为与旧图层相同的距离);

然后,调节坐标轴数据,选中图层,点击坐标轴数据,调节数据和原图层⼀致(注意字体和⼤⼩也应和原图层⼀致)

附录1.接触

1、Defining contact pairs in ABAQUS/Standard

After the selection of contact pair surfaces, three key factors must be determined when creating a contact formulation:⑴the contact discretization;⑵the tracking approach; and

⑶the assignment of “master” and “slave” roles to the respective surfaces.1.1the contact discretization

ABAQUS/Standard offers two contact discretizatio n options: a traditional “node-to-surface” discretization and a true “surface-to-surface” discretization.1.1.1 Node-to-surface contact discretization

Traditional node-to-surface discretization has the following characteristics:

⑴The slave nodes are constrained not to penetrate into the master surface; however, the nodes of the master surface can, in principle, penetrate into the slave surface⑵The contact direction is based on the normal of the master surface.

⑶The only information needed for the slave surface is the location and surface area associated with each node; The direction of the slave surface normal and slave surface curvature are notrelevant.Thus, the slave surface can be defined as a group of nodes—a node-based surface.

⑷Node-to-surface discretization is available even if a node-based surface is not used in the contact pair definition

Fig.1 Node-to-surface contact discretization1.1.2 Surface-to-surface contact discretization

To optimize stress accuracy, surface-to-surface discretization considers the shape of both the slave and master surfaces in the region of contact constraints.Surface-to-surface discretization has the following key characteristics:

⑴Contact conditions are enforced in an average sense over the slave surface, rather than at discrete points (such as at slave nodes, as in the case of node-to-surface discretization). Therefore, somepenetration may be observed at individual nodes; however, large, undetected penetrations of

因篇幅问题不能全部显示,请点此查看更多更全内容