您的当前位置:首页正文

巨噬细胞G偶联蛋白受体的表达与功能和传导

2020-02-15 来源:钮旅网
G-protein-coupledreceptorexpression,function,andsignalinginmacrophages

JaneLattin,*DavidA.Zidar,†KateSchroder,*StuartKellie,*,‡DavidA.Hume,*,§andMatthewJ.Sweet*,‡,1*CooperativeResearchCentreforChronicInflammatoryDiseasesand§SpecialResearchCentreforFunctionalandAppliedGenomics,InstituteforMolecularBioscience,and‡SchoolofMolecularandMicrobialSciences,UniversityofQueensland,Brisbane,Queensland,Australia;and†DivisionofCardiology,DukeUniversityMedicalCenter,Durham,NorthCarolina,USA

Abstract:G-protein-coupledreceptors(GPCRs)arewidelytargetedindrugdiscovery.Asmacro-phagesarekeycellularmediatorsofacuteandchronicinflammation,wereviewheretheroleofGPCRsinregulatingmacrophagefunction,withafocusoncontributiontodiseasepathologyandpo-tentialtherapeuticapplications.Withinthisanaly-sis,wehighlightnovelGPCRswithamacrophage-restrictedexpressionprofile,whichprovideave-nuesforfurtherexploration.Wealsoreviewanemergingliterature,whichdocumentsnovelrolesforGPCRsignalingcomponentsinGPCR-indepen-dentsignalinginmacrophages.Inparticular,weexaminethecrosstalkbetweenGPCRandTLRsignalingpathwaysandhighlightGPCRsignalingmoleculeswhicharelikelytohaveuncharacterizedfunctionsinthiscelllineage.J.Leukoc.Biol.82:16–32;2007.

KeytorWords:␤-arrestin⅐heterotrimeric⅐immune⅐Toll-likerecep-⅐kinase⅐inflammation

INTRODUCTION

G-protein-coupledreceptor(GPCR)classification

Theseven-transmembranedomainGPCRsconstitutethelarg-estknownsuperfamilyofcell-surfacereceptors.Theycontrolavarietyofcellularandphysiologicalprocesses,suchasper-ceptionoflight,pain,tasteandsmell,neurotransmission,digestion,andcardiovascularregulation.GPCRsarealsoim-portantregulatorsofinnateandacquiredimmunity.Thehu-mangenomeencodesϳ1000distinctGPCRs,whichareclas-sifiedintothreemainfamiliesandnumeroussubfamiliesonthebasisofsequencesimilarity.

Therhodopsin-likefamily(orFamilyA)isbyfarthelargestofthesefamiliesandconsistsofrhodopsin,adenosine,mela-nocortin,neuropeptide,olfactory,chemokine,andmelatoninreceptors,amongstothers.Thesecretin-likefamily(orFamilyB)consistsofϳ25members,includingthereceptorsforthegastrointestinalpeptidehormonefamily(secretin,glucagon,vasoactiveintestinalpeptide,andgrowthhormone-releasinghormone),calcitonin,andparathyroidhormone,aswellascorticotrophin-releasinghormonereceptors.Themetabotropic

16

JournalofLeukocyteBiologyVolume82,July2007

receptorfamily(orFamilyC)isthesmallestfamilyandcon-sistsoftheGABABreceptor,thecalcium-sensingreceptor,andsometastereceptors[1–3].Recently,MetpallyandSowdhamini[4]usedphylogeneticclusteringacrossspeciesasanalternativeapproachtoclassifyGPCRs.Thisstudyidenti-fiedeightmajorgroupsofGPCRsinhumans:peptiderecep-tors,chemokinereceptors,nucleotideandlipidreceptors,bio-genicaminereceptors,secretinreceptors,glutamatereceptors,celladhesionreceptors,andfrizzledreceptors.Theseweredividedfurtherintoatotalof32clusters.Despitethisapparentdiversity,allGPCRsmediatetheireffects,atleastinpart,throughcouplingtoheterotrimericG-proteinsuponagonist-inducedactivationofthereceptor.

OverviewofGPCRsignaling

Figure1outlinesthecentralroleofheterotrimericG-proteinsinGPCRsignaling.Intheabsenceofagonist,the␤␥-subunitassociateswiththeGDP-bound␣-subunit.AgonistoccupationofGPCRsstimulatesthereleaseofthe␣-subunitfromthe␤␥-subunit,andthefreesubunitsthenpositivelyornegativelyregulateeffectorenzymes,suchasionchannels,adenylylcyclases,andPLs.Theregulationofthesesecondmessengersmodulateslevelsofintracellularmediators,suchascAMP,intracellularcalcium,phosphoinositides,andDAG,whichinturnactivateorinhibiteffectorssuchasPKA,PKC,andPI-3K,ultimatelyleadingtoabiologicalresponse(Fig.1,Steps1and2)[5–7].Anarrayofdifferent␣-,␤-,and␥-subunitshasdiverseeffectsoneffectorsystemsandthusenablestheacti-vationofdistinctsignalingpathwaysandbiologicalresponses.Thisprocessisnotreviewedindetailhere,andinstead,thereaderisreferredtoextensivereviewsabouttherolesofdifferentheterotrimericG-proteincomplexesinGPCRsignal-ing[3,8].

Uponagonistactivationofreceptors,arapidattenuationofreceptorresponsivenessoccursthroughfeedbackmechanisms,whichpreventacuteandchronicoverstimulationoftherecep-tor(Fig.1).Thisprocessofdesensitizationiscontrolledby

1Correspondence:InstituteforMolecularBioscience,UniversityofQueens-land,St.Lucia,Brisbane,QLD4072,Australia.E-mail:m.sweet@imb.uq.edu.au

ReceivedJanuary22,2007;revisedMarch29,2007;acceptedApril1,2007.

doi:10.1189/jlb.0107051

0741-5400/07/0082-0016©SocietyforLeukocyteBiology

.

Fig.1.GPCRsignaling.1.AgonistoccupationofGPCRsstimulatesachangeinconformationofthereceptor,whichcouplesthereceptortotheG-proteinandpromotestheexchangeofGDPforGTPonthe␣-subunit.2.TheGTP-bound␣-subunitdissociatesfromthe␤␥-subunit;thefreesubunitsthenregulateeffectorenzymespositivelyornegatively,ultimatelyleadingtoabiologicalresponse.3.G-proteinsignalingisterminatedviareceptordesensitizationandinternalization.Desensitizationisinitiatedbyphosphorylationofactivatedreceptorswithinthethirdintracellularlooporcarboxy-terminaltailbyGPCRkinases(GRKs)and/orsecondmessenger-dependentproteinkinases.4.Thisphosphorylationpromotestranslocationofthecytosolicarrestinproteinstothemembrane,wheretheybindtothereceptorandpromoteinternalization.InthecaseofClassAreceptors,␤-arrestins(ARRBs)dissociatefromthereceptorpriortointernalization,andtheyremainassociatedwithClassBreceptorsthroughoutreceptorinternalization.5.InternalizedreceptorsmaypromoteasecondroundofsignalingthroughtheabilityofARRBstoactasscaffoldsintheassemblyofsignalingcomplexes.6.Thereceptoristhenrecycledtothemembranetoundergofurtherroundsofsignalingoristargetedfordegradation.ExamplesofGPCRsorcomponentsoftheGPCRsignalingmachinerywhicharehighlyexpressedorregulatedinmacrophagesarehighlightedinredboxes(refs.[27,29,39–41,85,88,170–172,185,221,222];J.LattinandM.J.Sweet,unpublisheddata;http://symatlas.gnf.org/SymAtlas/).ET-A/B,Endothelin-A/B;EMR1,epidermalgrowthfactor(EGF)module-containingmucin-likehormonereceptor;FPR,formylpeptidereceptor;PLC-␤,phospholipaseC-␤;ASK,apoptosissignal-regulatingkinase1;MKK4,MAPKkinase4;MEK,MKK;DAG,diacylglycerol;PKC,proteinkinaseC;RhoGEFs,Rhoguaninenucleotideexchangefactors.

threefamiliesofregulatorymolecules:secondmessenger-de-pendentproteinkinases,GRKs,andarrestins[9–11].Apartfromreceptordesensitizationandinternalization,thesefami-liesalsoregulateGPCRtrafficking,receptorrecycling,anddownstreamsignaling.

DesensitizationisinitiatedbyphosphorylationofactivatedGPCRswithinthethirdintracellularlooporthecarboxyl-terminaltailbyGRKsand/orsecondmessenger-dependentproteinkinases[12–14].Thisphosphorylationpromotestrans-locationofthecytosolicadaptorarrestinproteinstothemem-brane,wheretheybindtothereceptorandpromoteinternal-izationthroughinteractionwith␤2-adaptinandclathrincom-ponentsoftheendocyticmachinery[15–17].Asreceptor-containingendosomesmature,thedecreasingpHresultsindissociationoftheligandfromitsreceptorandreceptorde-phosphorylation.Thereceptoristhenrecycledtothemem-branetoundergofurtherroundsofsignaling(resensitization)oristargetedfordegradationtofurtherdown-regulatesignaling(Fig.1).GPCRscanbedividedintotwoclasses,ClassAorB,accordingtotheiraffinityforthe␤-arrestin(ARRB).ClassAreceptorsbindARRB2withmuchhigheraffinitythanARRB1,andClassBreceptorsbindbothARRBswithequalaffinities.TheclassesaredistinguishedfurtheronthebasisoftheirassociationwithARRBduringreceptorinternalization;ARRBsdissociatefromClassAreceptorspriortointernaliza-tion,andARRBsremainassociatedwithClassBreceptorsthroughoutreceptorinternalization(Fig.1).ClassAreceptorsrecyclerapidly,returningtothecellsurfacewithinϳ30minofinitialstimulation,andClassBreceptorsremainARRB-andendosome-associated1hafteractivation[18,19].Theprocess

Lattinetal.GPCRexpressionandfunctioninmacrophages

17

ofreceptordesensitizationandresensitizationisreviewedex-tensivelyelsewhere[20,21].

GPCRFUNCTIONINMACROPHAGES

Macrophagesareimportantcellularmediatorsofacuteandchronicinflammation.HostcytokinessuchasIFN-␥andbac-terialproducts,suchastheTLR4agonistLPS,elicittheproductionofproinflammatorymediatorsfrommacrophages.RegulationofmacrophagefunctionbyTLRagonistshasbeenacentralfocusofresearchininnateimmunityoverthelast10yearsandhasbeenreviewedextensively[22,23].Itisimpor-tanttonotethathost-andpathogen-derivedGPCRagonistsalsoregulatetheinflammatoryresponsethroughmodulatingmacrophagechemotaxis,survival,andactivation(forthepur-posesofthisreview,wedefinemacrophageactivationasaninduciblechangeinfunction,forexample,analteredproduc-tionofinflammatorymediators).Thechemokinereceptors,whichcomprisealargebranchoftherhodopsin-likefamily,modulatethenumbersofcellsininflammatorysitesbyleuko-cyteadhesionandmigration.Inmanycases,theyalsocontroltheactivationstateoftherecruitedcells.Consequently,thisfamilyhasbeenreviewedextensively[24–26].Forthisreason,wewillfocusonotherGPCRsthatarelesswell-studiedinmacrophagebiologyorwerenotincludedinrecentreviews,andconsidertheirfunctionininflammation.Figure2providesanoverviewofsomeofthemajorfunctionsofGPCRsinmacrophages.

torssuchasCR1andCR3onleukocytes,thusenhancingphagocyticcapacityandtherespiratoryburst[28].Further,C5atriggeredtheproductionofsuperoxideanionandPGE2fromresidentandelicitedmouseperitonealmacrophages[29],aswellasTNFandIL-1fromhumanandmousemacrophagepopulations[30,31].Itisnotsurprisingthatgivensuchpleio-tropic,proinflammatoryeffects,theC5aRisanessentialme-diatorofinflammationanddiseaseprogressioninthecollagen-inducedarthritis(CIA)model[32].InCIAinmice,C5aRablationpreventedtherecruitmentofneutrophils,Tcells,andmacrophagestojoints,decreasedthelevelsofinflammatorymediators(suchasIL-1␤andTNF)andchemoattractants(includingMIP-1␣,MIP-2␣,andepithelial-derivedneutro-phil-activatingfactor-78),andreducedjointinflammation,boneerosion,andpawswelling[32].Similarly,systematicadministrationofanti-C5amAbpreventeddiseaseonsetandamelioratedestablisheddiseaseinthesamemousediseasemodel[33].C5ahasalsobeenimplicatedasamajormediatorofhumaninflammatorydiseases,includingsepsis,acutelunginjury,andasthma/allergy[34].Forexample,sepsistriggerscomplementactivation,leadingtoelevatedlevelsofcomple-mentproducts,includingC5a,inhumansandinanimalmodels[35,36].InsupportofacentralroleforC5ainsepsispathol-ogy,blockadeofC5aactioninexperimentalsepsishasprovenbeneficial.Administrationofarabbitanti-humanC5aantibodyincreasedthesurvivalrateinaprimatemodelofsepsis[37].Similarly,anti-C5atreatmentinaratmodelofsepsisamelio-ratedtheprogressionofmultipleorganfailure,whichisasso-ciatedwithhighmortalityrate[38].

TheFPRfamily

Peptidereceptors

ThecomplementreceptorC5aR

ThecomplementcomponentC5aactsasapotentneutrophilandmonocytechemoattractantviatheGPCRC5aR/CD88[27].Italsoup-regulatestheexpressionofothercomplementrecep-

TheFPR1,aswellastherelatedfamilymembersFPR-like(FPRL)1and-2,areexpressedinaregulatedmannerinmacrophagesatmRNAandproteinlevel[39–42].FPR1trig-gerscellularlocomotionuponrecognitionofN-formylatedme-

Fig.2.OverviewofGPCRfunctioninmacrophages.GPCRsregulatediversemacrophagefunctionsincludingcell-cellcontact,survival,chemotaxisandactivation(e.g.,inflammatorymediatorproduction).

18JournalofLeukocyteBiologyVolume82,July2007http://www.jleukbio.org

thioninefrombacterialproteins.TheclassicFPR1agonist,fMLP,hasamuchhigheraffinityforFPR1thanFPRL1,andectopicexpressionstudiessuggestthatFPRL2doesnotrec-ognizethisligand[43–45].However,anendogenouspeptideligandforFPRL2wasidentifiedrecently[46],anditisnowclearthatFPR1andFPRL1canalsodetectnonformylatedbacterialproteins[47],aswellasendogenousligandssuchasannexin1[48],serumamyloidA[49],andamyloid␤-peptideof42residues[50].Giventheelevatedproductionofsuchendogenousligandsinchronicinflammatoryandneurodegen-erativediseases,targetingoftheFPRfamilymayreduceleukocyterecruitmentandinflammationinsuchsettings[43].FPRsalsoregulatetheprocessofmacrophageactivation;fMLPinducedtheexpressionofinducibleNOsynthetase(iNOS)andproductionofNOinmouseperitonealmacrophages[51]andthesecretionofIL-1␣,IL-1␤,andIL-6inhumanPBMC[52].TheimportanceofFPRinantimicrobialresponsesishigh-lightedbytheincreasedsusceptibilityofFPR-deficientmicetoListeriamonocytogenes[53].

WhilstFPRantagonistsmayhaveapplicationsasanti-inflammatoryagents,agonistsoftheFPRfamilymayhaveunexpectedapplicationsintheHIVfield.Thechemokinereceptors,CXCR4andCCR5,arecoreceptorsusedbymac-rophage-tropicHIVstrainstogaincellularentry[54,55].Individualswhoarehomozygousfora32-bpdeletionintheCCR5genelackfunctionalsurfaceCCR5yethaveanormalphenotypeandarerelativelyresistanttoHIV-1infection,thushighlightingtheimportanceofthisreceptorinHIVpathogen-esis[56,57].ActivationofFPRorFPRL1byfMLPinhumanmonocytes/macrophagesrapidlyinducedserinephosphoryla-tionandheterologousdesensitizationofCCR5andCXCR4[58,59].Further,fMLPreducedthefusionandinfectionofparticularstrainsofHIV-1inmacrophagesbycompromisingtheabilityofCCR5andCXCR4toactasHIV-1coreceptors[59];thereforeFPRagonistscouldbeexploredinthefutureasanapproachtotargetHIVspread.

Theprotease-activatedreceptor(PAR)family

andsmoothmusclecellssuchasatheroscleroticlesions[62,63].PAR-1nullmiceexhibiteddecreasedsecretionoftheproinflammatorymediatorsIL-1,IL-6,andmatrixmetallopro-teinase(MMP)-13,aswellasreduceddiseaseseverityinamousearthritismodel[64],whilePAR-2nullmiceshoweddiminishedcontacthypersensitivityresponsesandwerecom-pletelyresistanttoadjuvant-inducedarthritis[65,66].

Neuropeptidereceptors

Rodentandhumanmacrophagesexpresstheneurokinin-1receptor(NK-1RorTACR1),whichsignalsinresponsetoneuropeptidesubstanceP(SP)[67,68].SPisdistributedwidelywithinthecentralandperipheralnervoussystems,whereitregulatesneuronalcellsurvivalandneurotransmission[69].Italsomediatesproinflammatoryeffectsonanumberofinflammatorycells,includingmacrophages.SPinducedtheproteinexpressionofIL-1,TNF,andIL-6inhumanbloodmonocytesandhumanmonocyte-derivedmacrophages[70,71]andincreasedproductionofreactiveoxygenspeciesandPGD2secretionfromguineapigalveolarmacrophages[72].Expres-sionofNK-1RandSPproteinwasinducedinratandhumanmacrophagesinresponsetoLPS[67,68,73],suggestingtheexistenceofanautocrinepathway.

AswithSP,neuropeptideY(NPY)alsoperformsimmuno-modulatoryfunctions.Intheperipheralnervoussystem,NPYisconcentratedinthesympatheticdivision,isreleasedfromsympatheticnerveendingsandisthoughttoprovideanavenueforneuroimmunecrosstalk[74].SecondarylymphoidtissuessuchasthespleenarerichlyinnervatedbysympatheticnerveswhichcontainNPY[75]andthereisphysicalevidenceofsynapsesbetweenthenerveendingsandleukocytes[74,76].ExpressionoffunctionalNPYreceptorsoncellsoftheimmunesystem,includingmacrophages,hasbeenconfirmed[77,78]andNPYmodulatedseveraleffectorfunctionsofthemacro-phages[77,79,80].Forexample,DelaFuenteetal.[77]demonstratedthatNPYstimulatedadherencetosubstrate,chemotaxis,ingestionoflatexbeadsandproductionofsuper-oxideanioninmurineperitonealmacrophages.

Endothelial(ET)receptors

ThePARsareafamilyofGPCRsthatareactivateduponproteolyticcleavageoftheiraminoterminalexodomain.Thisunmasksanewaminoterminalwhichactsasatetheredligandtoactivatethereceptor.Differentiationofhumanmonocyteswasassociatedwithdifferentialexpressionoffunctionallyac-tivePARs,particularlyPAR-1andPAR-2,whichmediatedistinctregulatoryfunctionsininflammation[60].Inhumanmonocytes,PAR-1wasthemostabundantlyexpressedPAR,whilstPAR-3wasexpressedweakly.InvitrodifferentiationofhumanmonocytestomacrophagesbytreatmentwithGM-CSForCSF-1coincidedwithamarkedincreaseintheexpressionofPAR-1,-2,and-3atthemRNAandproteinlevel[60].Throm-bin-inducedactivationofPAR-1and-2inhumanperipheralmonocytesormacrophagesinducedthereleaseoftheproin-flammatorymediatorsMCP-1(CCL2)andIL-6[60],whilestimulationofPAR-2byPAR-2receptor-activatingpeptidesinhumanperipheralbloodmonocytesincreasedtheproductionofIL-1␤,IL-6,andIL-8[61].SeveralstudiesimplicatePARsasregulatorsofinflammatorydisease.PAR-1isabundantinthesynovialliningofrheumatoidarthritis(RA)andosteoarthritispatientsandishighlyexpressedinregionsrichinmacrophages

ET-1,thepredominantisoformoftheETpeptidefamilythatincludesET-1–4,regulatescellfunctionthroughtheGPCRs,ETreceptorsubtypeA(ETAR)andETBR.ET-1isproducedpredominantlybyendothelialcellsinthecardiovascularsys-temandisapowerfulvasoconstrictorandstimulatorofsmoothmusclecellproliferation[81,82].Inaddition,ET-1modulatesimmunecellfunctionduringinflammatoryresponses[83,84].InvitrostimulationofmurineperitonealmacrophageswithET-1inducedcyclooxygenase2(COX-2)mRNAexpressionandPGE2production[85].ET-1canalsoinducethesecretionofproinflammatorycytokinesbymacrophages.Forexample,ET-1treatmentofthemacrophagecelllineJ774.2increasedTNFsecretionviatheETAR[86].Inhumanmonocytes,ET-1triggeredTNFproduction,aswellasothercytokines,includingIL-8,GM-CSF,IL-1␤,andIL-6[87].ET-1canalsoinfluencetheproductionofsuperoxidesbymacrophages;ET-1primedO2–productionfromrabbitalveolarmacrophages[88].Finally,ET-1,aswellasET-2,elicitedMMP-2and-9productionfromhumanmonocyte-derivedmacrophageswhencoculturedwith

Lattinetal.GPCRexpressionandfunctioninmacrophages

19

breastcancercells[89].GiventheelevatedexpressionofET-1andtheETreceptorsinhighgrade,aggressivemetastaticbreastcancer[89–91],tumor-associatedmacrophagesmaypromotetumorspreadviathispathway.

NotonlydoesET-1regulatemacrophagefunction,butitisalsosecretedbythiscelltype;murinebonemarrow-derivedmacrophagesproducedET-1uponchallengewithgram-nega-tiveandgram-positivebacteria[92]andLPS[93].ClinicalobservationsinhumansandanimalmodelsofinflammationsuggestthatmacrophagesareanimportantsourceofET-1duringinfectionandinflammation[92,94–98].PeripheralbloodmonocytesfromsepticpatientsexpressedsignificantlyhigherlevelsofET-1mRNAincomparisonwithhealthysub-jects[94].Inaddition,Kupffercells(macrophagesresidingintheliver)releasedET-1inexperimentalmodelsofendotox-emia[95].Thesestudiesformpartofagrowingbodyofliteraturewhichsuggestaninvolvementofmacrophage-derivedET-1ininflammation.Indeed,theETsystemhasbeenpursuedasatargetforthetreatmentofinflammatorycardiovasculardiseaseandchronicobstructivepulmonarydisease[89–91,99–104].

Lipidreceptors

Theplatelet-activatingfactorreceptor(PAFR)

SeverallipidGPCRagonistsareregulatorsofmonocyte/mac-rophagefunction.PAF,whichisproducedandsecretedbyplatelets,neutrophils,eosinophils,monocytes,andmacro-phages[105,106],triggeredchemotaxisofmurineperitonealmacrophagesinadose-dependentmanner[107].Indeed,thePAF/PAFRsystemhasbeenimplicatedasamediatorofmonocyterecruitmentduringtheonsetofatherosclerosis[108].Inadditiontoregulatingmacrophagemigration,thePAFRmodulatesmacrophageactivation.PAFantagonistsinhibitedLPS-regulatediNOSmRNAexpressionandNOproductioninmurinemacrophagesandratKupffercells,implyinganinvolvementofautocrinePAFinLPSresponses[109–111].Furthermore,aPAFantagonistreducedthetoxicityofsystemicadministrationofendotoxinand/orlivebacteria[112–114].

AlthoughthePAF/PAFRsystemcontributestoexcessivehostinflammatoryresponses,itisalsocriticalforphagocytosisandeffectivepathogenclearance.PAFR-deficientmicehadenhancedbacterialloadinthelungsfollowingpulmonarychallengewithKlebsiellapneumoniaeandsuccumbedmorerapidlythanwild-typemice[115].Thisprotectiverolemaybepathogen-specific;thePAFRdidnotregulatebacterialloadsordiseaseseverityduringinfectionwithanotherlungpathogen,Mycobacteriumtuberculosis[116].Conversely,thePAFRisactuallyexploitedbyStreptococcuspneumoniaetoenablecel-lularinvasion[117].Apartfrominfectiousdisease,thePAF/PAFRhasbeenimplicatedinthepathologyofseveralinflam-matorydiseasesincludingthrombosis,allergicdisorders,ana-phylacticshockandacutelunginjury,aswellasmetastaticdisease[118,119].

TheleukotrieneB4receptor(LTB4R)

LTB4,anarachidonicacidderivative,actsviathetwoGPCRLTB4Rs,LTB4R1(BLT1)andLTB4R2(BLT2)[120,121],to

20

JournalofLeukocyteBiologyVolume82,July2007

stimulatemacrophage,neutrophil,eosinophil,andmastcellchemotaxis[122,123].MastcellsareamajorsourceofLTB4[124],butitisalsosecretedbyhumanalveolarmacrophages[125]andmurineperitonealmacrophages[126],suggestingtheexistenceofanautocrinepathwayinthislineage.Theimpor-tanceofLTB4-mediatedcellularrecruitmentishighlightedbythefailureofinflammatorycellstoinfiltrateintojointsandinitiateCIAinLTB4RϪ/Ϫmice[127].Inaddition,inhibitorstudieshaveimplicatedLTB4Rinmonocyterecruitmentandfoamcellformationinamousemodelofatherosclerosis[128].LTB4alsoinitiatesantimicrobialresponsesduringpathogenicchallenge.AswiththePAFR,LTB4appearedtobeacriticalfactorforthephagocytosisofK.pneumoniaebyalveolarmac-rophages[129,130].Indeed,PAFandLTB4havemanyover-lappingbiologicalactivities,whichmaybeexplainedtosomeextentbytheobservationthatinneutrophilsatleast,PAFactionwasmediatedpartlyviaautocrineLTB4[131].Exoge-nousLTB4activatedtheNADPHoxidasesysteminalveolarmacrophages[132],aswellasNOandTNFproductionandparasitekillinginTrypanosomacruzi-infectedmurinemacro-phages[133],indicatingthattheLTB4Rcanactivatemultipleantimicrobialpathways.

TheEPfamily

PGE2,asmalllipidmediatorthatregulatesdiverseprocessesincludingplateletaggregationandimmunefunction,ispro-ducedbyfibroblasts,somemalignantcellsandmacrophages[134].InvivoadministrationofPGE2resultsinanacuteinflammatoryresponsecharacterizedbypain,edema,andleu-kocyteinfiltration[135].Indeed,PGE2isamajormediatorofpathologyininflammatorydiseasessuchasRAandosteoar-thritis[136–138],andCOX-2,akeyenzymeinthePGE2biosyntheticpathway,hasbeentargetedextensivelyinthera-peuticapplicationsininflammatorydiseases[139].PGE2cansignalthroughfourEPs,EP1–4,allofwhichareGPCRs[140,141].TargeteddisruptionofeachoftheseEPshasdemon-stratedthatPGE2mediatesdistinctfunctionsdownstreamofeachreceptor:neuronalfunctionsviaEP1;femalereproduc-tion,vascularhypertension,andtumorigenesisviaEP2;fever,gastricmucosalprotection,painhypersensitivity,kidneyfunc-tion,andantiallergicresponseviaEP3;andductusarteriosusclosureandinflammation-associatedboneresorptionviaEP4[142–149].

PGE2isalsoimplicatedinthedevelopmentandmainte-nanceofTh2responses.PGE2generallysuppressesinflamma-torycytokineproductionfrommonocytesandmacrophages[150–154].Infact,theeffectsareselective;PGE2inhibitedtheproductionoftheTh1-promotingcytokineIL-12butam-plifiedIL-10productionfromhumanandmousemacrophagesrespectively[154,155].Similarly,Kurodaetal.[156]showedthatpretreatmentofmurinesplenocyteswithPGE2suppressedtheproteinexpressionoftheTh1-associatedchemokineIFN-inducibleprotein-10andenhancedproductionofmacrophage-derivedchemokine/CCL22,aligandfortheTh2cell-expressedchemokinereceptorCCR4.Sucheffects,aswellasdirectactiononTcells[157–160],resultinapolarizedTh2responseinmanyTh1/Th2-biaseddiseasemodels.

http://www.jleukbio.org

Theendothelialdifferentiationgene(EDG)family

MembersoftheEDGfamilyareactivatedbythelipidmedia-torslysophosphatidicacid(LPA)andsphingosine-1-phosphate(S1P)whichareprimarilyderivedfromactivatedimmunecells,includingplatelets,monocytes/macrophages,neutrophils,eo-sinophilsandmastcellsduringbloodclottingandwoundhealing[161–163].LPAstimulateswoundhealingbyinducingendothelialcellstoexpressadhesionmoleculesandproducecytokineswhichrecruitmacrophagestothesiteofthewound,therebymediatingtheinteractionofmacrophageswithendo-thelialcells[164–166].However,humanmonocytesandmac-rophagesalsoexpressseveralEDGreceptorsincludingEDG1,-2,-4,-5,and-8[167],suggestingthatLPAregulatesmacro-phagefunctiondirectly.Certainly,ratalveolarmacrophagesrespondedtoLPAandS1PbyproducingO2–atlevelscomparablewiththoseinducedbyLPSorfMLP[167].LPAisalsoimplicatedinregulatingmacrophagesurvival.ThePI-3K-Aktpathwayisrequiredformacrophagesurvival[168]andLPAactivatedthePI-3Kpathwaytoprovideasurvivalsignalinmurineperitonealmacrophagesduringserumdeprivation[169].

TheEGFfamily

tientswheretheligandsforthesereceptors,chondroitinsul-fatesandCD55(decay-acceleratingfactor),arealsopresent[178].EMR2andCD97contributetotherecruitmentandretentionofmacrophagestosynovialtissueinRA[178].EMR3isexpressedatthehighestlevelsinneutrophils,monocytesandmacrophages.Humanmonocyte-derivedmacrophagesandactivatedhumanneutrophilsboundEMR3[179],suggestingtheligandregulatescell-cellinteractionsinthemyeloidlin-eage.However,aswithothermembersoftheEMRfamily,littlefunctionalinformationiscurrentlyavailable.

Novelmacrophage-specificGPCRs

TheEGFfamilyofGPCRs,whicharethoughttobeinvolvedinregulatingcell-cellinteractions,consistsofsixmembersinhumans:EMR1–4,CD97andEGF-TM7-latrophilin-relatedprotein(ETL).MicelackfunctionalEMR2and-3genes.WiththeexceptionofETL,whichisexpressedinsmoothmuscle,allofthefamilyisexpressedonhematopoieticcells.Further,EMR1–4expressionisrestrictedtothemyeloidlineage.ThefoundingmemberoftheEGF-TM7family,EMR1,originallynamedF4/80,isadefinitivemarkerofmurinemacrophagesandisexpressedonavarietyofmacrophagesubsetsincludingliverKupffercells,residentbonemarrowmacrophages,thymiccorticalmacrophages,splenicredpulpmacrophages,lymphnodemedullarymacrophages,Langerhancells,microglialcellsandsomeCD8-negativemyeloiddendriticcells(DC)[170–172].AroleforEMR1intheadaptiveimmuneresponsewasdemonstratedrecently;Linetal.[173]showedthatEMR1wasessentialforthedevelopmentoffunctional,CD8-positive,an-tigen-specificregulatoryTcells(Treg),whicharenecessaryfortolerance.However,aligandforEMR1hasnotbeenidentifiedanditsexactroleinregulatingmacrophagefunctionremainspoorlydefined.Inhumans,EMR2andCD97wereidentifiedasreceptorsforcellsurfacechondroitinsulfate[174],suggestingthattheligandforEMR1maybeaproteoglycan.GivenitsroleinthedevelopmentofTreg,theEMR1ligandmaybeex-pressedonthiscelllineage.

EMR4,alsoknownasF4/80-likereceptor(FIRE),ismostsimilartoEMR1andisalsoexpressedpredominantlyontissuemacrophagesinthemouse[175].Itsproteinexpressionisup-regulatedduringmacrophageactivation[175]butlikeEMR1,itsfunctionisunknown.EMR2expressioninhumansisalsorestrictedtomyeloidcellsincludingmonocytes,mac-rophages,DCandgranulocytes.CD97istheclosestfamilymembertoEMR2sharedbymice.However,unlikethere-strictedexpressionofEMR2,CD97isexpressedonabroadrangeonleukocytes[176,177].EMR2andCD97arehighlyexpressedonmyeloidcellsinthesynovialtissueofRApa-

Recentexpression-profilingstudieshaveenabledtheidentifi-cationofseveraltissue-specificgenes.OneexampleistheGenomicInstituteofNovartisResearchFoundationSymatlasdatasetthatcharacterizedgeneexpressioninapanelofhumancelltypesincludingprimarymonocytesandotherleukocytepopulations(ref.[180];http://symatlas.gnf.org/SymAtlas/).Thisdatasethasrevealedtheexistenceofseveralmacrophage-enriched,orphanGPCRsofunknownfunction.Theseincludethepurinergicreceptors(P2RY)5and-13andGPCR65.Acrossapanelofhumancelltypes,P2RY5andGPR65wereexpressedhighlyinseveralimmunecelltypesincludingDC,CD4ϩandCD8ϩTcells,CD56ϩNKcells,CD14ϩmono-cytesandCD33ϩmyeloidcells.P2RY13mRNAexpressionwasstrikinglyrestrictedtomacrophagesbeingexpressedonlyinwholebloodandprimaryhumanCD14ϩmonocytesandCD33ϩmyeloidcells(http://symatlas.gnf.org/SymAtlas/).Wehaveconfirmedthemacrophage-specificand/orregulatedex-pressionpatternsofsomeoftheseGPCRsinthemouse.Figure3AshowsthatP2RY6mRNAexpressionwaselevatedinapanelofprimarymousemacrophagesandmacrophagecelllinesascomparedwithlymphoidandfibroblastcelllines.InthecaseofP2RY5,weconfirmedthatmRNAexpressionisinducedduringmonocyte-to-macrophagedifferentiationinhu-mans(J.LattinandM.J.Sweet,unpublisheddata)andthatexpressionwasdown-regulateddramaticallybyLPSinprimarymousemacrophages(Fig.3B).Thedown-regulationin“clas-sicallyactivatedmacrophages”isconsistentwitharecentreportthatidentifiedP2RY5asaGPCRexpressedbyalter-nativelyactivated(M2)humanmacrophages[181].AlthoughligandsandfunctionsforsuchGPCRsareunknown,futurestudiesarelikelytoidentifyrolesininflammationandimmu-nity.

AdditionalcomplexityofGPCRexpressionandfunctioninmacrophagebiology

ManyoftheGPCRsdescribedabovehaveoverlappingbiolog-icalactivitiesonmacrophages.Despitetheapparentredun-dancy/overlapintheirbiologicaleffectsonmacrophages,geneknockoutstudieshavegenerallydemonstratednonredundantrolesforGPCRsininflammationandimmunity(e.g.,C5aR[32],PAFR[115],EMR1[173],EP2and-4[182,183],aswellasthechemokinereceptorsnotreviewedhere).Thisisoftenthecaseeveninthesamemodel,forexample,thecommonlyusedCIAmodelinmice.Generally,suchstudieshaveas-sessedhowasingleGPCRagonistaffectsbiologicalresponses.However,tissuemacrophagesandrecruitedmonocytesinaninflammatorysettingarelikelytoencountermultipleagonists

Lattinetal.GPCRexpressionandfunctioninmacrophages

21

Fig.3.ExpressionanalysisofP2RY5and-6inmousemacrophages.Quan-titativereal-timePCRanalysiswasusedtoassessthemRNAlevelsof(A)P2RY6inapanelofmurinecelltypes,includingprimarybonemarrow-derivedmacrophages(BMM),macrophagecelllines(RAW264.7,WR19M),lympho-blastcelllines(EL4andMOPC)andfibroblastcelllines(NIH3T3andL929),and(B)P2RY5inbonemarrow-derivedmacrophagesculturedinthepresenceofCSF-1overaLPStime-course(0–21h).LevelsofmRNAaredisplayedasrelativetothehousekeepinggenehypoxanthineguaninephosphoribosyltrans-ferase(HPRT;meanoftriplicatesϩSD;representativeofthreeindependentexperiments;A)ornormalizedtotheuntreatedcontrolacrossthreeindepen-dentexperiments(meanϩSEM;B).

andinvitrostudiesusingcombinationsofGPCRagonistswouldbemorelikelytoreflecttheinvivoenvironment.InvitrostudiesthatassesscombinatorialeffectsofGPCRagonistsmayidentifysynergistic,antagonistic,ortrulyredundanteffectsofGPCRligands,whichwouldnototherwisebeapparent.TheantagonisticeffectofFPRandFPRL1ligandsonCCR5andCXCR4responsesrepresentsoneexampleofsuchinterplay[59].Alternatively,theindividualGPCRsmightfunctionindistinctstagesoftheinflammationprocess,effectivelyactinginapathwaythatcanbeblockedatmultiplelevels.

Anadditionallevelofcomplexityisapparentatthelevelofgeneregulation.Recentgenome-wideanalysisoftranscriptionstartsitesusingcapanalysisofgeneexpressionhasdemon-stratedthatalternativepromoteruseisappliedextensively[184].Indeed,severalGPCRsincludingP2RY5,ETBRandEDG1,appeartousemultiplepromoters/transcriptionstartsites,aphenomenonthatislikelytoimpactontissue-specificexpressionandfunction.AlternativesplicingalsooccursinsomeGPCR-encodedgenes.Forexample,multiplealterna-tivelysplicedformsofEMR1lackthetransmembrane-span-ninghelicesandpresumablyencodesoluble,secreteddomi-nant-negativeformsofthereceptor.AlternativelysplicedformsoftherelatedGPCRs,CD97andEMR2,havevariablenum-bersofEGFdomainsintheextracellularregion.InthecaseofEMR2,onlythefull-lengthisoformwasabletomediatecell-cellinteractionsthroughchondroitinsulfate[174].Thus,reg-22

JournalofLeukocyteBiologyVolume82,July2007

ulationofalternativesplicingislikelytoimpactonthefunctionofseveralmacrophage-expressedGPCRs.

EXPRESSIONANDFUNCTIONOFGPCRSIGNALINGCOMPONENTSINMACROPHAGES

Macrophage-enrichedexpressionofGPCRsignalingcomponents

GiventhediversityofGPCRsinmacrophages,itisperhapsnotsurprisingthatGPCRsignalingcomponentsareexpressedatelevatedlevelsinthesecells.AsidefromtheirfunctioninsignalinginresponsetothemanyGPCRsexpressedbythislineage,anemergingliteratureisalsodocumentingnovelrolesforthesesignalingcomponentsinGPCR-independentre-sponsesinmacrophages.Here,weidentifythoseGPCRsig-nalingmoleculesthatarehighlyexpressedinmacrophagesandfocusontheirroleinalternativepathwaysofcellactivation,withparticularemphasisonTLRsignaling.

G-proteins

G-protein-mediatedsignaltransductionisafunctionallyver-satilesystemasaresultofitsmodulararchitectureandtheexistenceofnumeroussubtypesofG-proteins.The␣-subunitsaredividedintofourfamilies(G␣s,Gmultiple␣i/G␣o,Gsubtypes.␣q/G/G␣11andG␣12␣13)andeachfamilycontainsUnlikethe␣-subunits,the␤␥-subunitsareassembledfromarela-tivelysmallrepertoire:five␤-subunitsand12␥-subunits.SeveralG-proteinsshowrestrictedexpressionatthemRNAlevel;forexample,GspecificwhileG␣O1,G␣z,G␣14,G␥7,andG␥13arebrain-␣T1/2andG␤3arerestrictedtothevisualsystem(http://symatlas.gnf.org/SymAtlas/).

Primaryhumanandmousemacrophagesexpresselevatedlevelsofthepertussistoxin(PTx)-sensitiveGsubtypes(ref.[185];http://symatlas.gnf.org/SymAtlas/).␣i2andGSeveral␣i3linesofevidencesuggestthatinmacrophages,PTx-sensitiveG-proteinsregulatenotonlyGPCRsignaling,butalsoTLRsignaling.JakwayandDeFranco[186]firstshowedthatpre-treatmentofthemacrophagecelllineP388D1withPTxre-ducedtheproductionofIL-1inresponsetoLPS.PTxalsoimpairedLPSresponsesinhumanmonocyticU937cells.Fur-ther,LPSstimulationcausedGimplicatingthisG-protein␣asi2phosphorylationinthesecells,aplayerinLPSsignaling[187].Inmouseperitonealmacrophages,PTxinhibitedLPS-dependentNOproductionbutamplifiedTNFproteinproduc-tion[188],althoughothersreportednoeffectofthisinhibitoronTNFsecretion[189].Atthelevelofsignaling,PTxreducedLPS-mediatedactivationofp38,ERK1/2andAP-1,withoutaffectingNF-␬Bactivation[190–192].GeneticapproachesalsosupportaroleforPTx-sensitiveG-proteinsinTLR-medi-atedresponses.Forexample,LPS-inducedTNF,IL-10andthrombaxaneB2proteinproductionwasreducedinperitonealmacrophagesderivedfrommicelackingGWhethersucheffectsaredependentonGPCRs␣i2orGis␣i1/3[193].unknown,butatleastonestudyhasimplicatedtheGPCR,CXCR4,aspartofaCD14-independentLPSreceptorcomplex[194].WhilePTx-sensitiveG-proteinscanregulateGPCRandTLR

http://www.jleukbio.org

signalinginmacrophages,PTx-insensitiveG-proteinsappeartooccupyamoreconventionalsignalingrolebycouplingseveralchemotacticGPCRs[e.g.,CXCR2,C5aR,C3aR,FPRandtheIL-8receptor(IL-8R)]toactivationofNF-␬B[195–198].Inmanyofthesecases,G␣15/16wasimplicatedasaspecificplayerandafunctionforthisPTx-insensitiveG-proteininGPCRsignalinginmacrophagesissupportedbyitselevatedexpressioninprimaryhumanCD14ϩmonocytesandCD33ϩmyeloidcells(http://symatlas.gnf.org/SymAtlas/).The␤-subunitsG␤1andG␤2L1[alsoknownasreceptorforactivatedCkinase1(RACK-1)]arealsoexpressedhighlyinprimarymousemacrophages,primaryhumanCD14ϩmono-cytesandotherleukocytepopulations(http://symatlas.gnf.org/SymAtlas/),andevidenceexistsforrolesinnon-GPCRsignal-ing.Inhumanembryokidney(HEK)293cells,G␤1interacteddirectlywithhistonedeacetylase(HDAC)5[199],amemberoftheHDACfamilywhichregulatesgeneexpressionbymodify-inghistoneproteinsandtranscriptionfactorspost-translation-ally.HDACshavebeenreportedtoregulateLPS-inducedproinflammatorygeneexpressioninmacrophages[93];thus,G␤1mayimpactonTLRsignalingbyregulatingHDAC5function.G␤2L1alsohasrolesbeyondregulationofGPCRsignaling;itmediatedtherecruitmentofSTAT1andSTAT3totheIFN-␣/␤andthetyrosinekinaseinsulin-likegrowthfactorreceptor1(IGFR-1)receptors,respectively[200–202].

mainandhavepoorlydefinedfunctions[203,204].Inadditiontoitswell-recognizedroleinactivatingtheERKandAKTpathways,thetyrosinekinaseIGFR-1signalsviathehetero-trimericG-proteinG␣i2[212,213].RGS19[alsoknownasG␣-interactingprotein(GAIP)interactsspecificallywiththePDZ-containingprotein,GAIP-interactingprotein,C-terminus(GIPC)[214].InteractionoftheRGS19/GIPCheterodimerwiththeIGFR-1consolidatesIGF-1signalingtoMAPKactivation[215].RGS19andGAICcanalsoformacomplexwiththenervegrowthfactorreceptor,TrkA[216],althoughitremainsunclearhowthiscomplexaffectssignalingthroughthesere-ceptors.AlthoughfunctionalstudiesaboutRGS19havenotbeenperformedinmacrophages,IGF-1canstimulateprolifer-ationofmousemacrophagesandtheirprogenitors[217,218].Thus,RGS19islikelytoregulateIGF-1signalinginmacro-phages,andgiventhemacrophage-enrichedexpressionofmanyRGSfamilymembers,otherfunctionsinthislineagearelikelytoexist.

GRKs

TheGRKfamilyconsistsofsevenmembersandcanbegrouped,accordingtohomology,intotherhodopsin/visualGRKgroup(GRK1and-7),GRK2and-3group(alsoknownasthe␤-adrenergicreceptorkinase1and2,respectively)andGRK4group(GRK4,-5,and-6)[219,220].AlthoughGRK2,-5and-6arereportedlyexpressedubiquitouslyinmiceandhumans,theyareexpressedhighlyatmRNAlevelsinmonocytesandmacrophages[221](http://symatlas.gnf.org/SymAtlas/),andGRK2and-6proteinlevelsareinducedduringmonocytedifferentiation[222].ArraydatasuggestthatGRK2and-6mRNAexpressionisdown-regulatedbyLPSinbonemarrow-derivedmacrophages(http://symatlas.gnf.org/SymAtlas/).Inaddition,severalstudieshavedocumentedreg-ulatedexpressionofGRKsduringinflammatoryresponses.ProteinexpressionofGRK2and-5waselevatedinthelungsofIL-1␤-treatedrats[223]whileoxygenradicalsandtheinflammatorycytokines,IL-6andIFN,reducedGRK2proteininhumanTlymphocytesandhumanPBMC,respectively[224,225].Furthermore,GRK2and-5proteinexpressionwasdown-regulatedbyLPSinpolymorphonuclearneutrophils,therebyaugmentingchemokineresponsiveness[226].InRApatients,GRK2and-6proteinlevelsinPBMCweredecreasedmark-edly[225].SimilareffectsonGRK2and-6expressionwereapparentinmousesplenocytesduringallphasesofthemousemodelofmultiplesclerosis,experimentalautoim-muneencephalitis(EAE)[227].Grk2heterozygousknock-outmiceshowedanearlieronsetofEAEwhichwasasso-ciatedwithanincreaseinearlyinfiltrationofTcellsandmacrophages[228].LocomotionofTcellsderivedfromGrk2-/ϩmicewasenhancedinresponsetochemokinessuchasMIP-1␣andMIP-1␤[229].Thus,reducedGRKexpressionininflam-matorydiseasesislikelytoenhanceleukocyteinfiltrationanddiseaseprogression.

AswiththeRGSfamily,GRKshavefunctionswhichareindependentofGPCRdesensitization[230,231].First,GRKsareabletophosphorylatenonreceptorsubstratessuchastu-bulin[232],synucleins[233]andphosducin[234].Inaddition,GRKsmodulatesignalinginaphosphorylation-independentmannerbyinteractingwithproteinsinvolvedinsignalingand

Lattinetal.GPCRexpressionandfunctioninmacrophages

23

RegulatorsofG-proteinsignaling(RGS)

TheRGScontroltherateofGTPhydrolysisontheG␣subunitofheterotrimericG-proteins.AlongwithGRKsandarrestins,theyregulatethedurationofsignalingdownstreamofGPCRs.TheRGSfamilyisdiverse,ranginginsizefrom17kDato160kDaanddisplayingwidelyvariableandregulatedexpressionpatterns[203].Thefamilycontains30members,allofwhichshareacommonRGSdomainthatisresponsiblefortheirGTPase-activatingactivity.MostRGSproteinshaveGTPase-activatingactivityspecificfortheG␣iandG␣qsubfamiliesofthe␣-subunits.SomeRGSnotonlyregulateG-proteinsignal-ingthroughcontrollingG␣GTPhydrolysisbutcanalsofunc-tionessentiallyaseffectorantagoniststhroughcompetitiveinhibitionofeffector-G␣-proteininteractions[203,204].

Ourownunpublishedmousemicroarraydata,aswellashumanandmousesymatlasmRNAexpressiondata(http://symatlas.gnf.org/SymAtlas/),indicatethatRGS1,-2,-10,-18and-19areexpressedinamacrophage-enrichedmannerorarestronglyregulatedbyLPS.Inaddition,Hausmannetal.[205]showedthatLPSandTNFincreasedRGS7mRNAlevelsmarkedlyinthemacrophage-likecelllineRAW264.7[205].RGS1,-2,-3,-4,and-13regulatechemokine-mediatedhom-ingofBcellswhileRGS16controlsTcellmigration[206–210].AfunctionalroleforRGS1indesensitizingseveralchemotacticreceptorsinhumanmonocyteswasalsodemon-strated[211].However,itissomewhatsurprisingthatalmostnothingelseisknownofthefunctionofthisfamilyinmacro-phagebiology.

AnobviouspredictionisthatotherRGSfamilymembersalsoregulatemacrophagemigration,butthereisalsogrowingevidencetosuggestRGSmayperformGPCR-independentfunctions.First,severalofthelargerRGSproteinscontainlargeN-and/orC-terminalregionswhichflanktheRGSdo-

trafficking,includingPI-3Ks,guanosinetriphosphatase-activat-ingprotein,G␣qandG␤␥,ERKandAKT[235–240].BindingofGRK2or-3totheGGRKs[238,241],while␤␥complexinducesactivationoftheseselectivebindingofGRK2and-3toactivatedG␣qselectivelyinhibitsGcanalsoregulateERKactivation.␣qsignaling[242,243].GRKsTcellsderivedfromGRK2heterozygousmice,whichhavereducedexpressionofGRK2,hadsignificantlyenhancedERK1/2signalinginre-sponsetoCCR5ligandsinvitro[229].Furthermore,GRK5knockdownresultedinenhancedERKphosphorylationandI␬Bkinase(IKK)-mediatedp105phosphorylationanddegra-dationinresponsetoLPSinthemacrophagecelllineRAW264.7.GRK5alsoboundtoandphosphorylatedp105,implyingthatp105phosphorylationbyGRK5negativelyreg-ulatesLPS-stimulatedERKactivation[244].Finally,GRKsalsoregulatesignalinginresponsetoTGF-␤andEGFinaGPCR-independentmanner[245,246].ThesedatasuggestthatGRKs,suchasGRK2,-5and-6,arelikelytomodulatemacrophagefunctionbyactingasregulatorycomponentswithinGPCRandnon-GPCRsignalingpathways.Theymaythereforecoordinatecrosstalkbetweenthemajorplayerswithinsuchpathways.

ARRBs

AlthoughARRBsarereportedtobeexpressedubiquitously,expressiondatageneratedbyourlaboratorysuggestthatal-thoughARRB1and-2mRNAandproteinaredetectableinarangeofcelltypes,ARRB1andinparticular,ARRB2areconstitutivelyexpressedathighlevelsinmouseandhumanmacrophages(J.LattinandMJ.Sweet,unpublisheddata).AswellasregulatingGPCRdesensitizationandthereforedown-streamsignaling,ARRBsalsoregulatemacrophagesignalinginaGPCR-independentmanner.Inmacrophages,growth,sur-vival,differentiationandactivationsignalsaregenerallytrans-ducedthroughthePI-3K,ERK,JNKandp38MAPKpath-ways,aswellastheNF-␬Bpathway.ARRBsregulatesignalingviaeachofthesepathwaysthroughtheirabilitytoactasadaptormoleculesintheassemblyofsignalingcomplexesandbyregulatingtheintracellularcompartmentalizationofthesecomplexes[247–249].

␤-ARR1and-2canbothcontributetoERK1and-2acti-vation.ActivationofanumberofGPCRsleadstophosphory-lationofERKwhichisindependentofG-proteinsyetdepen-dentonARRBs.Forexample,ARRB2wasrequiredforCXCR4,PAR-2,␤2-adrenergicreceptor,andangiotensinIIType1A-mediatedERKactivationviadirectbindingtocom-ponentsoftheERKpathwaysuchasSRCandRAF-1[250–256].Further,directbindingofARRBtoERKenhancedERKphosphorylationandtargetedittothecytosol[251,254].Activationofanumberofreceptortyrosinekinases,includingtheCSF-1receptor,whichisrequiredformacrophagesurvivalandproliferation[257],leadstoactivationofERK1/2[258].Therefore,itispossiblethatARRBsregulateERKsignaling,notonlyinresponsetoGPCRagonistsbutalsoinresponsetoreceptortyrosinekinaseligands.ThisiscertainlythecasefortheIGFR-1[259,260].Further,arecentpublicationdemon-stratedthatknockdownofARRB1resultedinincreased

24

JournalofLeukocyteBiologyVolume82,July2007

ERK1/2phosphorylationinresponsetoLPSinRAW264.7[244].

ARRB2,butnotARRB1,activatedJNK3signalingthroughitsabilitytoactasascaffold[261].AntagonismofangiotensinIIType1AinCOS-7cellsresultedinbindingofARRB2toJNK3andJNK3retentioninthecytosolinintracellularvesi-cles.TheinteractionamongJNK3,ARRB2andASK1resultedintheassemblyofsignalingcomplexesandenhancedphos-phorylationofJNK3.AconservedJNKdockingdomainintheC-terminalofARRB2(RRSLHL,aminoacids196–201)isrequiredforthisresponse[261,262].TheJNKsarecriticalforCSF-1-mediatedproliferationandsurvivalofmacrophages[263].WhetherARRB2regulatesCSF-1-regulatedJNKacti-vationinmacrophagesiscurrentlyunclear,butpreliminarystudiesinthislaboratoryhaveshownthattheJNKdockingdomainofARRB2doesindeedregulatemacrophagesurvival(J.LattinandM.J.Sweet,unpublisheddata).

ARRBsalsoregulatemacrophagesignalingthroughinter-actionwithNF-␬B,afamilyofproinflammatorytranscriptionfactors.ARRB1and-2interactedwiththeI␬B␣componentoftheNF-␬BsignalingcomplexinarangeofcelltypesincludingHEK293,HeLa,Jurkat,COS-7andTHP-1cells[264,265].ThisinteractioninvolvedtheN-terminalofARRB2andtheC-terminalofI␬B␣[264].OverexpressionofARRB1or-2inHeLacellsinhibitedTNF-inducedNF-␬Bactivation[265].Similarly,overexpressionofARRB2inHEK293cellsinhib-itedTNF-inducedNF-␬BDNAbinding,whileRNAinterfer-ence-mediatedknockdownofARRB2hadanopposingeffect[264].TheseinhibitoryeffectsofARRB2onNF-␬BactivationapparentlyoccurviathepreventionofI␬B␣phosphorylationanddegradation[264,265].Consistentwiththeseeffectsonsignaling,knockdownofARRB2enhancedthemRNAandproteinexpressionoftheNF-␬BtargetgenesIL-6andIL-8inresponsetoproinflammatorystimuli[264].

ArecentpublicationbyWangetal.[266]furtherdemon-stratedaroleforARRBsinTLR-mediatedmacrophageacti-vation.InresponsetoTLRorIL-1familyligands,TNFrecep-tor-associatedfactor(TRAF)6isauto-ubiquitinated,oligomer-izesandsubsequentlyinitiatesdownstreamsignalingevents,includingactivationofIKKandJNK[267,268].ARRB1and-2interactedwithTRAF6uponTLR4orIL-1RactivationandpreventedTRAF6auto-ubiquitination,oligomerizationandIKKactivation[266].Therefore,ARRBsactatmultiplelevelstoinhibitTLRsignaling.SuchdataarelikelytobeapreludetotheidentificationofotherGPCRsignalingmolecules(e.g.,G-proteins,RGSfamilymembers,GRKs)withintheTLRsig-nalingframework.

Insummary,anumberofGPCRregulatorymoleculesplayimportantrolesinmacrophagefunctionthroughregulationofsignaltransductiondownstreamofGPCRs,aswellasnon-GPCRs,suchasTLRs.TheabilityofGPCRregulatoryproteinstointeractwithcomponentsofmultiplepathwayswouldallowtheseproteinstomediatesignalingcrosstalk(Fig.4),thusenablingthecoordinationofapreciseandappropriatecellularresponse.Dysregulatedexpressionorfunctionoftheseregula-toryproteinsmaythuscontributetopathologyinacuteandchronicinflammatorydiseases.

http://www.jleukbio.org

Fig.4.GPCRsignalingcomponentsregulateTLRsignaling.TheabilityofGPCRregulatoryproteinstointeractwithcomponentsofmultiplepathwaysallowsthemtomediatesignalingcrosstalkbetweenGPCRsandnon-GPCRs,suchastheTLRs.GrayarrowsdepictpotentialcrosstalkmechanismsincludingtransactivationofGPCRs,suchasCXCR4,inresponsetotheTLRagonistandGPCRregulatorycomponentmediationofsignalingdownstreamofnon-GPCRs,suchasNF-␬B,TRAF6,ERK1/2,JNKandp38[186–188,198,212,213,215,221,222,226,235,244,247,261,265,269].CrosstalkbetweenGPCRandnon-GPCRpathwaysenablesthecoordinationofpreciseandappropriatecellularresponses.Mal,MyD88adapter-like;TPL2,tumorprogressionlocus-2;TRIF,Toll/IL-1Rtranslationinitiationregiondomain-containingadaptor-inducingIFN-␤;IRAK,IL-1R-associatedkinase;IRF3,IFNregulatoryfactor3;MEKK1,MEKkinase1;ATF2,activatingtranscriptionfactor2.

CONCLUSIONS

GPCRsandtheirsignalingmoleculeshavediverseandcentralrolesinregulatingmacrophagefunction.Severalmacrophage-expressedGPCRshavebeentargetedintherapeuticap-proachesindiseaseareas,whichrangefrominfectiousdiseasetocancer.Here,wehavedocumentedotherpoorlycharacter-izedGPCRs,aswellasGPCRsignalingcomponentsthatarehighlyexpressedinmacrophagesorareregulatedduringmac-rophageactivation.Futurestudiesaboutsuchmoleculeswillprovidefurtherinsightintomacrophagebiologyandarelikelytoleadtonovelapproachesfortargetingmacrophage-mediateddisease.

wascovered,werenotcitedinthisreview.ThisworkwassupportedbyagrantfromtheNationalHealthandMedicalResearchCouncilofAustralia(ID301210).

REFERENCES

1.Flower,D.R.(1999)ModelingG-protein-coupledreceptorsfordrugdesign.Biochim.Biophys.Acta1422,207–234.

2.Gether,U.,Kobilka,B.K.(1998)Gprotein-coupledreceptors.II.Mechanismofagonistactivation.J.Biol.Chem.273,17979–17982.3.Pierce,K.L.,Premont,R.T.,Lefkowitz,R.J.(2002)Seven-transmem-branereceptors.Nat.Rev.Mol.CellBiol.3,639–650.

4.Metpally,R.P.,Sowdhamini,R.(2005)CrossgenomephylogeneticanalysisofhumanandDrosophilaGprotein-coupledreceptors:applica-tiontofunctionalannotationoforphanreceptors.BMCGenomics6,106.5.Downes,G.B.,Gautam,N.(1999)TheGproteinsubunitgenefamilies.Genomics62,544–552.

6.Wettschureck,N.,Offermanns,S.(2005)MammalianGproteinsandtheircelltypespecificfunctions.Physiol.Rev.85,1159–1204.

7.Neer,E.J.(1995)HeterotrimericGproteins:organizersoftransmem-branesignals.Cell80,249–257.

ACKNOWLEDGMENTS

Weapologizetotheauthorsofmanyrelevantstudies,whobecauseofspacelimitationsandthebroadresearchareathat

Lattinetal.GPCRexpressionandfunctioninmacrophages25

8.Hubbard,K.B.,Hepler,J.R.(2006)CellsignalingdiversityoftheGq␣familyofheterotrimericGproteins.Cell.Signal.18,135–150.

9.Lefkowitz,R.J.(1993)Gprotein-coupledreceptorkinases.Cell74,409–412.

10.Ferguson,S.S.,DowneyIII,W.E.,Colapietro,A.M.,Barak,L.S.,

Menard,L.,Caron,M.G.(1996)Roleof␤-arrestininmediatingagonist-promotedGprotein-coupledreceptorinternalization.Science271,363–366.

11.Zhang,J.,Barak,L.S.,Winkler,K.E.,Caron,M.G.,Ferguson,S.S.

(1997)Acentralrolefor␤-arrestinsandclathrin-coatedvesicle-medi-atedendocytosisin␤2-adrenergicreceptorresensitization.Differentialregulationofreceptorresensitizationintwodistinctcelltypes.J.Biol.Chem.272,27005–27014.

12.Bouvier,M.,Hausdorff,W.P.,DeBlasi,A.,O’Dowd,B.F.,Kobilka,

B.K.,Caron,M.G.,Lefkowitz,R.J.(1988)Removalofphosphorylationsitesfromthe␤2-adrenergicreceptordelaysonsetofagonist-promoteddesensitization.Nature333,370–373.

13.Eason,M.G.,Moreira,S.P.,Liggett,S.B.(1995)Fourconsecutive

serinesinthethirdintracellularlooparethesitesfor␤-adrenergicreceptorkinase-mediatedphosphorylationanddesensitizationofthe␣2A-adrenergicreceptor.J.Biol.Chem.270,4681–4688.

14.Brannock,M.T.,Weng,K.,Robinson,P.R.(1999)Rhodopsin’scar-boxyl-terminalthreoninesarerequiredforwild-typearrestin-mediatedquenchoftransducinactivationinvitro.Biochemistry38,3770–3777.15.Laporte,S.A.,Miller,W.E.,Kim,K.M.,Caron,M.G.(2002)␤-Arres-tin/AP-2interactioninGprotein-coupledreceptorinternalization:iden-tificationofa␤-arrestinbingingsitein␤2-adaptin.J.Biol.Chem.277,9247–9254.

16.Laporte,S.A.,Oakley,R.H.,Holt,J.A.,Barak,L.S.,Caron,M.G.

(2000)Theinteractionof␤-arrestinwiththeAP-2adaptorisrequiredfortheclusteringof␤2-adrenergicreceptorintoclathrin-coatedpits.J.Biol.Chem.275,23120–23126.

17.Fessart,D.,Simaan,M.,Laporte,S.A.(2005)c-Srcregulatesclathrin

adapterprotein2interactionwith␤-arrestinandtheangiotensinIItype1receptorduringclathrin-mediatedinternalization.Mol.Endocrinol.19,491–503.

18.Oakley,R.H.,Laporte,S.A.,Holt,J.A.,Barak,L.S.,Caron,M.G.

(2001)Moleculardeterminantsunderlyingtheformationofstableintra-cellularGprotein-coupledreceptor-␤-arrestincomplexesafterreceptorendocytosis.J.Biol.Chem.276,19452–19460.

19.Oakley,R.H.,Laporte,S.A.,Holt,J.A.,Caron,M.G.,Barak,L.S.

(2000)Differentialaffinitiesofvisualarrestin,␤arrestin1,and␤arres-tin2forGprotein-coupledreceptorsdelineatetwomajorclassesofreceptors.J.Biol.Chem.275,17201–17210.

20.Barak,L.S.,Wilbanks,A.M.,Caron,M.G.(2003)Constitutivedesen-sitization:anewparadigmforGprotein-coupledreceptorregulation.AssayDrugDev.Technol.1,339–346.

21.Gainetdinov,R.R.,Premont,R.T.,Bohn,L.M.,Lefkowitz,R.J.,Caron,

M.G.(2004)DesensitizationofGprotein-coupledreceptorsandneuro-nalfunctions.Annu.Rev.Neurosci.27,107–144.

22.Schroder,K.,Hertzog,P.J.,Ravasi,T.,Hume,D.A.(2004)Interferon-␥:

anoverviewofsignals,mechanismsandfunctions.J.Leukoc.Biol.75,163–189.

23.Sweet,M.J.,Hume,D.A.(1996)Endotoxinsignaltransductionin

macrophages.J.Leukoc.Biol.60,8–26.

24.Locati,M.,Otero,K.,Schioppa,T.,Signorelli,P.,Perrier,P.,Baviera,S.,

Sozzani,S.,Mantovani,A.(2002)Thechemokinesystem:tuningandshapingbyregulationofreceptorexpressionandcouplinginpolarizedresponses.Allergy57,972–982.

25.Mantovani,A.(1999)Thechemokinesystem:redundancyforrobust

outputs.Immunol.Today20,254–257.

26.Locati,M.,Riboldi,E.,Otero,K.,Martinez,F.O.,Riva,F.,Perrier,P.,

Baviera,S.,Signorelli,P.,Bonecchi,R.,Allavena,P.,Sozzani,S.,Man-tovani,A.(2001)Regulationofthechemokinesystematthelevelofchemokinereceptorexpressionandsignalingactivity.Immunobiology204,536–542.

27.Gerard,C.,Gerard,N.P.(1994)C5Aanaphylatoxinanditsseven

transmembrane-segmentreceptor.Annu.Rev.Immunol.12,775–808.28.Mollnes,T.E.,Brekke,O.L.,Fung,M.,Fure,H.,Christiansen,D.,

Bergseth,G.,Videm,V.,Lappegard,K.T.,Kohl,J.,Lambris,J.D.(2002)EssentialroleoftheC5areceptorinE.coli-inducedoxidativeburstandphagocytosisrevealedbyanovellepirudin-basedhumanwholebloodmodelofinflammation.Blood100,1869–1877.

29.Kunkel,S.L.,Kaercher,K.,Plewa,M.,Fantone,J.C.,Ward,P.A.

(1982)Productionofcyclooxygenaseproductsandsuperoxideanionbymacrophagesinresponsetochemotacticfactors.Prostaglandins24,789–799.26JournalofLeukocyteBiologyVolume82,July200730.Cavaillon,J.M.,Fitting,C.,Haeffner-Cavaillon,N.(1990)Recombinant

C5aenhancesinterleukin1andtumornecrosisfactorreleasebylipopo-lysaccharide-stimulatedmonocytesandmacrophages.Eur.J.Immunol.20,253–257.

31.Goodman,M.G.,Chenoweth,D.E.,Weigle,W.O.(1982)Inductionof

interleukin1secretionandenhancementofhumoralimmunitybybind-ingofhumanC5atomacrophagesurfaceC5areceptors.J.Exp.Med.156,912–917.

32.Grant,E.P.,Picarella,D.,Burwell,T.,Delaney,T.,Croci,A.,Avitahl,

N.,Humbles,A.A.,Gutierrez-Ramos,J.C.,Briskin,M.,Gerard,C.,Coyle,A.J.(2002)EssentialrolefortheC5areceptorinregulatingtheeffectorphaseofsynovialinfiltrationandjointdestructioninexperimen-talarthritis.J.Exp.Med.196,1461–1471.

33.Wang,Y.,Rollins,S.A.,Madri,J.A.,Matis,L.A.(1995)Anti-C5

monoclonalantibodytherapypreventscollagen-inducedarthritisandamelioratesestablisheddisease.Proc.Natl.Acad.Sci.USA92,8955–8959.

34.Guo,R.F.,Ward,P.A.(2005)RoleofC5aininflammatoryresponses.

Annu.Rev.Immunol.23,821–852.

35.DeBoer,J.P.,Creasey,A.A.,Chang,A.,Roem,D.,Eerenberg,A.J.,

Hack,C.E.,TaylorJr.,F.B.(1993)ActivationofthecomplementsysteminbaboonschallengedwithliveEscherichiacoli:correlationwithmor-talityandevidenceforabiphasicactivationpattern.Infect.Immun.61,4293–4301.

36.Nakae,H.,Endo,S.,Inada,K.,Takakuwa,T.,Kasai,T.,Yoshida,M.

(1994)Serumcomplementlevelsandseverityofsepsis.Res.Commun.Chem.Pathol.Pharmacol.84,189–195.

37.Stevens,J.H.,O’Hanley,P.,Shapiro,J.M.,Mihm,F.G.,Satoh,P.S.,

Collins,J.A.,Raffin,T.A.(1986)Effectsofanti-C5aantibodiesontheadultrespiratorydistresssyndromeinsepticprimates.J.Clin.Invest.77,1812–1816.

38.Huber-Lang,M.,Sarma,V.J.,Lu,K.T.,McGuire,S.R.,Padgaonkar,

V.A.,Guo,R.F.,Younkin,E.M.,Kunkel,R.G.,Ding,J.,Erickson,R.,Curnutte,J.T.,Ward,P.A.(2001)RoleofC5ainmultiorganfailureduringsepsis.J.Immunol.166,1193–1199.

39.Dai,Y.,Major,J.,Novotny,M.,Hamilton,T.A.(2005)IL-4inhibits

expressionoftheformylpeptidereceptorgeneinmouseperitonealmacrophages.J.InterferonCytokineRes.25,11–19.

40.Mandal,P.,Novotny,M.,Hamilton,T.A.(2005)Lipopolysaccharide

inducesformylpeptidereceptor1geneexpressioninmacrophagesandneutrophilsviatranscriptionalandposttranscriptionalmechanisms.J.Immunol.175,6085–6091.

41.Sullivan,R.,Griffin,J.D.,Malech,H.L.(1987)Acquisitionofformyl

peptidereceptorsduringnormalhumanmyeloiddifferentiation.Blood70,1222–1224.

42.Yang,D.,Chen,Q.,Le,Y.,Wang,J.M.,Oppenheim,J.J.(2001)

Differentialregulationofformylpeptidereceptor-like1expressiondur-ingthedifferentiationofmonocytestodendriticcellsandmacrophages.J.Immunol.166,4092–4098.

43.Panaro,M.A.,Acquafredda,A.,Sisto,M.,Lisi,S.,Maffione,A.B.,

Mitolo,V.(2006)BiologicalroleoftheN-formylpeptidereceptors.Immunopharmacol.Immunotoxicol.28,103–127.

44.Boulay,F.,Tardif,M.,Brouchon,L.,Vignais,P.(1990)Synthesisand

useofanovelN-formylpeptidederivativetoisolateahumanN-formylpeptidereceptorcDNA.Biochem.Biophys.Res.Commun.168,1103–1109.

45.Durstin,M.,Gao,J.L.,Tiffany,H.L.,McDermott,D.,Murphy,P.M.

(1994)DifferentialexpressionofmembersoftheN-formylpeptiderecep-torgeneclusterinhumanphagocytes.Biochem.Biophys.Res.Commun.201,174–179.

46.Migeotte,I.,Riboldi,E.,Franssen,J.D.,Gregoire,F.,Loison,C.,

Wittamer,V.,Detheux,M.,Robberecht,P.,Costagliola,S.,Vassart,G.,Sozzani,S.,Parmentier,M.,Communi,D.(2005)IdentificationandcharacterizationofanendogenouschemotacticligandspecificforFPRL2.J.Exp.Med.201,83–93.

47.Betten,A.,Bylund,J.,Christophe,T.,Boulay,F.,Romero,A.,Hell-strand,K.,Dahlgren,C.(2001)AproinflammatorypeptidefromHelico-bacterpyloriactivatesmonocytestoinducelymphocytedysfunctionandapoptosis.J.Clin.Invest.108,1221–1228.

48.Ernst,S.,Lange,C.,Wilbers,A.,Goebeler,V.,Gerke,V.,Rescher,U.

(2004)Anannexin1N-terminalpeptideactivatesleukocytesbytrigger-ingdifferentmembersoftheformylpeptidereceptorfamily.J.Immunol.172,7669–7676.

49.Su,S.B.,Gong,W.,Gao,J.L.,Shen,W.,Murphy,P.M.,Oppenheim,

J.J.,Wang,J.M.(1999)Aseven-transmembrane,Gprotein-coupledreceptor,FPRL1,mediatesthechemotacticactivityofserumamyloidAforhumanphagocyticcells.J.Exp.Med.189,395–402.

http://www.jleukbio.org

50.Le,Y.,Gong,W.,Tiffany,H.L.,Tumanov,A.,Nedospasov,S.,Shen,W.,

Dunlop,N.M.,Gao,J.L.,Murphy,P.M.,Oppenheim,J.J.,Wang,J.M.(2001)Amyloid(␤)42activatesaG-protein-coupledchemoattractantreceptor,FPR-like-1.J.Neurosci.21,RC123.

51.Sodhi,A.,Biswas,S.K.(2002)fMLP-inducedinvitronitricoxide

productionanditsregulationinmurineperitonealmacrophages.J.Leu-koc.Biol.71,262–270.

52.Arbour,N.,Tremblay,P.,Oth,D.(1996)N-formyl-methionyl-leucyl-phenylalanineinducesandmodulatesIL-1andIL-6inhumanPBMC.Cytokine8,468–475.

53.Gao,J.L.,Lee,E.J.,Murphy,P.M.(1999)Impairedantibacterialhost

defenseinmicelackingtheN-formylpeptidereceptor.J.Exp.Med.189,657–662.

54.Berger,E.A.,Murphy,P.M.,Farber,J.M.(1999)Chemokinereceptors

asHIV-1coreceptors:rolesinviralentry,tropism,anddisease.Annu.Rev.Immunol.17,657–700.

55.Oppermann,M.(2004)ChemokinereceptorCCR5:insightsintostruc-ture,function,andregulation.Cell.Signal.16,1201–1210.

56.Samson,M.,Libert,F.,Doranz,B.J.,Rucker,J.,Liesnard,C.,Farber,

C.M.,Saragosti,S.,Lapoumeroulie,C.,Cognaux,J.,Forceille,C.,etal.(1996)ResistancetoHIV-1infectionincaucasianindividualsbearingmutantallelesoftheCCR-5chemokinereceptorgene.Nature382,722–725.

57.Liu,R.,Paxton,W.A.,Choe,S.,Ceradini,D.,Martin,S.R.,Horuk,R.,

MacDonald,M.E.,Stuhlmann,H.,Koup,R.A.,Landau,N.R.(1996)HomozygousdefectinHIV-1coreceptoraccountsforresistanceofsomemultiply-exposedindividualstoHIV-1infection.Cell86,367–377.58.Shen,W.,Proost,P.,Li,B.,Gong,W.,Le,Y.,Sargeant,R.,Murphy,

P.M.,VanDamme,J.,Wang,J.M.(2000)ActivationofthechemotacticpeptidereceptorFPRL1inmonocytesphosphorylatesthechemokinereceptorCCR5andattenuatescellresponsestoselectedchemokines.Biochem.Biophys.Res.Commun.272,276–283.

59.Le,Y.,Shen,W.,Li,B.,Gong,W.,Dunlop,N.M.,Wang,J.M.(1999)

Anewinsightintotheroleof“old”chemotacticpeptidereceptorsFPRandFPRL1:down-regulationofchemokinereceptorsCCR5andCXCR4.Forum(Genova)9,299–314.

60.Colognato,R.,Slupsky,J.R.,Jendrach,M.,Burysek,L.,Syrovets,T.,

Simmet,T.(2003)Differentialexpressionandregulationofprotease-activatedreceptorsinhumanperipheralmonocytesandmonocyte-de-rivedantigen-presentingcells.Blood102,2645–2652.

61.Johansson,U.,Lawson,C.,Dabare,M.,Syndercombe-Court,D.,New-land,A.C.,Howells,G.L.,Macey,M.G.(2005)Humanperipheralbloodmonocytesexpressproteasereceptor-2andrespondtoreceptoractivationbyproductionofIL-6,IL-8,andIL-1{␤}.J.Leukoc.Biol.78,967–975.62.Cirino,G.,Napoli,C.,Bucci,M.,Cicala,C.(2000)Inflammation-coag-ulationnetwork:areserineproteasereceptorstheknot?TrendsPharma-col.Sci.21,170–172.

63.Nelken,N.A.,Soifer,S.J.,O’Keefe,J.,Vu,T.K.,Charo,I.F.,Coughlin,

S.R.(1992)Thrombinreceptorexpressioninnormalandatherosclerotichumanarteries.J.Clin.Invest.90,1614–1621.

64.Yang,Y.H.,Hall,P.,Little,C.B.,Fosang,A.J.,Milenkovski,G.,

Santos,L.,Xue,J.,Tipping,P.,Morand,E.F.(2005)Reductionofarthritisseverityinprotease-activatedreceptor-deficientmice.ArthritisRheum.52,1325–1332.

65.Lindner,J.R.,Kahn,M.L.,Coughlin,S.R.,Sambrano,G.R.,Schauble,

E.,Bernstein,D.,Foy,D.,Hafezi-Moghadam,A.,Ley,K.(2000)Delayedonsetofinflammationinprotease-activatedreceptor-2-deficientmice.J.Immunol.165,6504–6510.

66.Ferrell,W.R.,Lockhart,J.C.,Kelso,E.B.,Dunning,L.,Plevin,R.,

Meek,S.E.,Smith,A.J.,Hunter,G.D.,McLean,J.S.,McGarry,F.,Ramage,R.,Jiang,L.,Kanke,T.,Kawagoe,J.(2003)Essentialroleforproteinase-activatedreceptor-2inarthritis.J.Clin.Invest.111,35–41.67.Bost,K.L.,Breeding,S.A.,Pascual,D.W.(1992)Modulationofthe

mRNAsencodingsubstancePanditsreceptorinratmacrophagesbyLPS.Reg.Immunol.4,105–112.

68.Ho,W.Z.,Lai,J.P.,Zhu,X.H.,Uvaydova,M.,Douglas,S.D.(1997)

HumanmonocytesandmacrophagesexpresssubstancePandneuroki-nin-1receptor.J.Immunol.159,5654–5660.

69.Maggi,C.A.(2000)Principlesoftachykininergicco-transmissioninthe

peripheralandentericnervoussystem.Regul.Pept.93,53–64.

70.Ho,W.Z.,Kaufman,D.,Uvaydova,M.,Douglas,S.D.(1996)Substance

Paugmentsinterleukin-10andtumornecrosisfactor-␣releasebyhumancordbloodmonocytesandmacrophages.J.Neuroimmunol.71,73–80.71.Lotz,M.,Vaughan,J.H.,Carson,D.A.(1988)Effectofneuropeptideson

productionofinflammatorycytokinesbyhumanmonocytes.Science241,1218–1221.72.Murris-Espin,M.,Pinelli,E.,Pipy,B.,Leophonte,P.,Didier,A.(1995)

SubstancePandalveolarmacrophages:effectsonoxidativemetabolismandeicosanoidproduction.Allergy50,334–339.

73.Germonpre,P.R.,Bullock,G.R.,Lambrecht,B.N.,VanDeVelde,V.,

Luyten,W.H.,Joos,G.F.,Pauwels,R.A.(1999)PresenceofsubstancePandneurokinin1receptorsinhumansputummacrophagesandU-937cells.Eur.Respir.J.14,776–782.

74.Bedoui,S.,Kawamura,N.,Straub,R.H.,Pabst,R.,Yamamura,T.,von

Horsten,S.(2003)RelevanceofneuropeptideYfortheneuroimmunecrosstalk.J.Neuroimmunol.134,1–11.

75.Felten,D.L.,Felten,S.Y.,Carlson,S.L.,Olschowka,J.A.,Livnat,S.

(1985)Noradrenergicandpeptidergicinnervationoflymphoidtissue.J.Immunol.135,755s–765s.

76.Elenkov,I.J.,Wilder,R.L.,Chrousos,G.P.,Vizi,E.S.(2000)The

sympatheticnerve—anintegrativeinterfacebetweentwosupersystems:thebrainandtheimmunesystem.Pharmacol.Rev.52,595–638.77.DelaFuente,M.,Bernaez,I.,DelRio,M.,Hernanz,A.(1993)Stimu-lationofmurineperitonealmacrophagefunctionsbyneuropeptideYandpeptideYY.InvolvementofproteinkinaseC.Immunology80,259–265.

78.Dimitrijevic,M.,Stanojevic,S.,Vujic,V.,Beck-Sickinger,A.,von

Horsten,S.(2005)NeuropeptideYanditsreceptorsubtypesspecificallymodulateratperitonealmacrophagefunctionsinvitro:counterregulationthroughY1andY2/5receptors.Regul.Pept.124,163–172.

79.DelaFuente,M.,DelRio,M.,Medina,S.(2001)Changeswithagingin

themodulationbyneuropeptideYofmurineperitonealmacrophagefunctions.J.Neuroimmunol.116,156–167.

80.Dureus,P.,Louis,D.,Grant,A.V.,Bilfinger,T.V.,Stefano,G.B.(1993)

NeuropeptideYinhibitshumanandinvertebrateimmunocytechemo-taxis,chemokinesis,andspontaneousactivation.Cell.Mol.Neurobiol.13,541–546.

81.Motte,S.,McEntee,K.,Naeije,R.(2006)Endothelinreceptorantago-nists.Pharmacol.Ther.110,386–414.

82.Luscher,T.F.,Barton,M.(2000)Endothelinsandendothelinreceptor

antagonists:therapeuticconsiderationsforanovelclassofcardiovasculardrugs.Circulation102,2434–2440.

83.Wanecek,M.,Weitzberg,E.,Rudehill,A.,Oldner,A.(2000)Theendo-thelinsysteminsepticandendotoxinshock.Eur.J.Pharmacol.407,1–15.

84.Battistini,B.,Forget,M.A.,Laight,D.(1996)Potentialrolesforendo-thelinsinsystemicinflammatoryresponsesyndromewithaparticularrelationshiptocytokines.Shock5,167–183.

85.Shimada,K.,Yonetani,Y.,Kita,T.,Suzumura,A.,Takayanagi,T.,

Nakashima,T.(1998)Cyclooxygenase2expressionbyendothelin-1-stimulatedmouseresidentperitonealmacrophagesinvitro.Eur.J.Phar-macol.356,73–80.

86.Ruetten,H.,Thiemermann,C.(1997)Endothelin-1stimulatesthebio-synthesisoftumornecrosisfactorinmacrophages:ET-receptors,signaltransductionandinhibitionbydexamethasone.J.Physiol.Pharmacol.48,675–688.

87.Cunningham,M.E.,Huribal,M.,Bala,R.J.,McMillen,M.A.(1997)

Endothelin-1andendothelin-4stimulatemonocyteproductionofcyto-kines.Crit.CareMed.25,958–964.

88.Kojima,T.,Hattori,K.,Hirata,Y.,Aoki,T.,Sasai-Takedatsu,M.,Kino,

M.,Kobayashi,Y.(1996)Endothelin-1hasaprimingeffectonproduc-tionofsuperoxideanionbyalveolarmacrophages:itspossiblecorrelationwithbronchopulmonarydysplasia.Pediatr.Res.39,112–116.

89.Grimshaw,M.J.,Hagemann,T.,Ayhan,A.,Gillett,C.E.,Binder,C.,

Balkwill,F.R.(2004)Aroleforendothelin-2anditsreceptorsinbreasttumorcellinvasion.CancerRes.64,2461–2468.

90.Hagemann,T.,Binder,C.,Binder,L.,Pukrop,T.,Trumper,L.,Grim-shaw,M.J.(2005)Expressionofendothelinsandtheirreceptorspro-motesaninvasivephenotypeofbreasttumorcellsbutisinsufficienttoinduceinvasioninbenigncells.DNACellBiol.24,766–776.

91.Grimshaw,M.J.(2005)Endothelinsinbreasttumorcellinvasion.Cancer

Lett.222,129–138.

92.Wahl,J.R.,Goetsch,N.J.,Young,H.J.,VanMaanen,R.J.,Johnson,

J.D.,Pea,A.S.,Brittingham,A.(2005)Murinemacrophagesproduceendothelin-1aftermicrobialstimulation.Exp.Biol.Med.(Maywood)230,652–658.

93.Aung,H.T.,Schroder,K.,Himes,S.R.,Brion,K.,vanZuylen,W.,

Trieu,A.,Suzuki,H.,Hayashizaki,Y.,Hume,D.A.,Sweet,M.J.,Ravasi,T.(2006)LPSregulatesproinflammatorygeneexpressioninmacrophagesbyalteringhistonedeacetylaseexpression.FASEBJ.20,1315–1327.

94.Ebihara,I.,Nakamura,T.,Shimada,N.,Shoji,H.,Koide,H.(1998)

EffectofhemoperfusionwithpolymyxinB-immobilizedfiberonplasma

Lattinetal.GPCRexpressionandfunctioninmacrophages27

endothelin-1andendothelin-1mRNAinmonocytesfrompatientswithsepsis.Am.J.KidneyDis.32,953–961.

95.Liu,B.,Zhou,J.,Chen,H.,Wang,D.,Hu,D.,Wen,Y.,Xiao,N.(1997)Expressionandcellularlocationofendothelin-1mRNAinratliverfollowingendotoxemia.Chin.Med.J.(Engl.)110,932–935.

96.Lundblad,R.,Giercksky,K.E.(1995)Endothelinconcentrationsinexperimentalsepsis:profilesofbigendothelinandendothelin1-21inlethalperitonitisinrats.Eur.J.Surg.161,9–16.

97.Xu,J.,Zhong,N.S.(1997)Theinteractionoftumornecrosisfactor␣andendothelin-1inpathogeneticmodelsofasthma.Clin.Exp.Allergy27,568–573.

98.

Salh,B.,Hoeflick,K.,Kwan,W.,Pelech,S.(1998)Granulocyte-mac-rophagecolony-stimulatingfactorandinterleukin-3potentiateinter-feron-␥-mediatedendothelinproductionbyhumanmonocytes:roleofproteinkinaseC.Immunology95,473–479.

99.Hay,D.W.(2000)Chronicobstructivepulmonarydisease:emergingtherapies.Curr.Opin.Chem.Biol.4,412–419.

100.

Ihara,M.,Ishikawa,K.,Fukuroda,T.,Saeki,T.,Funabashi,K.,Fukami,T.,Suda,H.,Yano,M.(1992)Invitrobiologicalprofileofahighlypotentnovelendothelin(ET)antagonistBQ-123selectivefortheETAreceptor.J.Cardiovasc.Pharmacol.20(Suppl.12),S11–S14.

101.

Ishikawa,K.,Ihara,M.,Noguchi,K.,Mase,T.,Mino,N.,Saeki,T.,Fukuroda,T.,Fukami,T.,Ozaki,S.,Nagase,T.,etal.(1994)Biochem-icalandpharmacologicalprofileofapotentandselectiveendothelinB-receptorantagonist,BQ-788.Proc.Natl.Acad.Sci.USA91,4892–4896.

102.Sharma,R.,Coats,A.J.,Anker,S.D.(2000)Theroleofinflammatorymediatorsinchronicheartfailure:cytokines,nitricoxide,andendothe-lin-1.Int.J.Cardiol.72,175–186.

103.Spieker,L.E.,Noll,G.,Luscher,T.F.(2001)Therapeuticpotentialforendothelinreceptorantagonistsincardiovasculardisorders.Am.J.Car-diovasc.Drugs1,293–303.

104.Tostes,R.C.,Muscara,M.N.(2005)Endothelinreceptorantagonists:anotherpotentialalternativeforcardiovasculardiseases.Curr.DrugTargetsCardiovasc.Haematol.Disord.5,287–301.

105.Hanahan,D.J.(1986)Plateletactivatingfactor:abiologicallyactivephosphoglyceride.Annu.Rev.Biochem.55,483–509.

106.Snyder,F.(1985)Chemicalandbiochemicalaspectsofplateletactivat-ingfactor:anovelclassofacetylatedether-linkedcholine-phospholipids.Med.Res.Rev.5,107–140.

107.

Prpic,V.,Uhing,R.J.,Weiel,J.E.,Jakoi,L.,Gawdi,G.,Herman,B.,Adams,D.O.(1988)Biochemicalandfunctionalresponsesstimulatedbyplatelet-activatingfactorinmurineperitonealmacrophages.J.CellBiol.107,363–372.

108.

Quarck,R.,DeGeest,B.,Stengel,D.,Mertens,A.,Lox,M.,Theilmeier,G.,Michiels,C.,Raes,M.,Bult,H.,Collen,D.,VanVeldhoven,P.,Ninio,E.,Holvoet,P.(2001)Adenovirus-mediatedgenetransferofhumanplatelet-activatingfactor-acetylhydrolasepreventsinjury-inducedneointimaformationandreducesspontaneousatherosclerosisinapoli-poproteinE-deficientmice.Circulation103,2495–2500.

109.

Aliberti,J.C.,Machado,F.S.,Gazzinelli,R.T.,Teixeira,M.M.,Silva,J.S.(1999)Platelet-activatingfactorinducesnitricoxidesynthesisinTrypanosomacruzi-infectedmacrophagesandmediatesresistancetoparasiteinfectioninmice.Infect.Immun.67,2810–2814.

110.

Mustafa,S.B.,Flickinger,B.D.,Olson,M.S.(1999)Suppressionoflipopolysaccharide-inducednitricoxidesynthaseexpressionbyplatelet-activatingfactorreceptorantagonistsintheratliverandculturedratKupffercells.Hepatology30,1206–1214.

111.

Szabo,C.,Wu,C.C.,Mitchell,J.A.,Gross,S.S.,Thiemermann,C.,Vane,J.R.(1993)Platelet-activatingfactorcontributestotheinductionofnitricoxidesynthasebybacteriallipopolysaccharide.Circ.Res.73,991–999.

112.Anderson,B.O.,Bensard,D.D.,Harken,A.H.(1991)Theroleofplateletactivatingfactoranditsantagonistsinshock,sepsisandmultipleorganfailure.Surg.Gynecol.Obstet.172,415–424.

113.VanderPoll,T.,Lowry,S.F.(1995)Tumornecrosisfactorinsepsis:mediatorofmultipleorganfailureoressentialpartofhostdefense?Shock3,1–12.

114.

Albert,D.H.,Luo,G.,Magoc,T.J.,Tapang,P.,Holms,J.H.,Davidsen,S.K.,Summers,J.B.,Carter,G.W.(1996)ABT-299,anovelPAFantagonist,attenuatesmultipleeffectsofendotoxemiainconsciousrats.Shock6,112–117.

115.

Soares,A.C.,Pinho,V.S.,Souza,D.G.,Shimizu,T.,Ishii,S.,Nicoli,J.R.,Teixeira,M.M.(2002)Roleoftheplatelet-activatingfactor(PAF)receptorduringpulmonaryinfectionwithgramnegativebacteria.Br.J.Pharmacol.137,621–628.

116.

Weijer,S.,Leemans,J.C.,Florquin,S.,Shimizu,T.,Ishii,S.,vanderPoll,T.(2003)Hostresponseofplatelet-activatingfactorreceptor-

28JournalofLeukocyteBiologyVolume82,July2007deficientmiceduringpulmonarytuberculosis.Immunology109,552–556.

117.

Cundell,D.R.,Gerard,N.P.,Gerard,C.,Idanpaan-Heikkila,I.,Tuo-manen,E.I.(1995)Streptococcuspneumoniaeanchortoactivatedhumancellsbythereceptorforplatelet-activatingfactor.Nature377,435–438.

118.Braquet,P.,Touqui,L.,Shen,T.Y.,Vargaftig,B.B.(1987)Perspectivesinplatelet-activatingfactorresearch.Pharmacol.Rev.39,97–145.119.

Im,S.Y.,Ko,H.M.,Kim,J.W.,Lee,H.K.,Ha,T.Y.,Lee,H.B.,Oh,S.J.,Bai,S.,Chung,K.C.,Lee,Y.B.,Kang,H.S.,Chun,S.B.(1996)Augmentationoftumormetastasisbyplatelet-activatingfactor.CancerRes.56,2662–2665.

120.Yokomizo,T.,Izumi,T.,Chang,K.,Takuwa,Y.,Shimizu,T.(1997)AG-protein-coupledreceptorforleukotrieneB4thatmediateschemotaxis.Nature387,620–624.

121.Yokomizo,T.,Kato,K.,Terawaki,K.,Izumi,T.,Shimizu,T.(2000)AsecondleukotrieneB(4)receptor,BLT2.Anewtherapeutictargetininflammationandimmunologicaldisorders.J.Exp.Med.192,421–432.122.

Huang,W.W.,Garcia-Zepeda,E.A.,Sauty,A.,Oettgen,H.C.,Rothen-berg,M.E.,Luster,A.D.(1998)Molecularandbiologicalcharacteriza-tionofthemurineleukotrieneB4receptorexpressedoneosinophils.J.Exp.Med.188,1063–1074.

123.

Weller,C.L.,Collington,S.J.,Brown,J.K.,Miller,H.R.,Al-Kashi,A.,Clark,P.,Jose,P.J.,Hartnell,A.,Williams,T.J.(2005)LeukotrieneB4,anactivationproductofmastcells,isachemoattractantfortheirpro-genitors.J.Exp.Med.201,1961–1971.

124.

Mencia-Huerta,J.M.,Razin,E.,Ringel,E.W.,Corey,E.J.,Hoover,D.,Austen,K.F.,Lewis,R.A.(1983)Immunologicandionophore-inducedgenerationofleukotrieneB4frommousebonemarrow-derivedmastcells.J.Immunol.130,1885–1890.

125.Fels,A.O.,Pawlowski,N.A.,Cramer,E.B.,King,T.K.,Cohn,Z.A.,Scott,W.A.(1982)HumanalveolarmacrophagesproduceleukotrieneB4.Proc.Natl.Acad.Sci.USA79,7866–7870.

126.Du,J.T.,Foegh,M.,Maddox,Y.,Ramwell,P.W.(1983)HumanperitonealmacrophagessynthesizeleukotrienesB4andC4.Biochim.Biophys.Acta753,159–163.

127.

Shao,W.H.,DelPrete,A.,Bock,C.B.,Haribabu,B.(2006)TargeteddisruptionofleukotrieneB4receptorsBLT1andBLT2:acriticalroleforBLT1incollagen-inducedarthritisinmice.J.Immunol.176,6254–6261.

128.

Aiello,R.J.,Bourassa,P.A.,Lindsey,S.,Weng,W.,Freeman,A.,Showell,H.J.(2002)LeukotrieneB4receptorantagonismreducesmonocyticfoamcellsinmice.Arterioscler.Thromb.Vasc.Biol.22,443–449.

129.

Bailie,M.B.,Standiford,T.J.,Laichalk,L.L.,Coffey,M.J.,Strieter,R.,Peters-Golden,M.(1996)Leukotriene-deficientmicemanifestenhancedlethalityfromKlebsiellapneumoniainassociationwithdecreasedalve-olarmacrophagephagocyticandbactericidalactivities.J.Immunol.157,5221–5224.

130.Mancuso,P.,Standiford,T.J.,Marshall,T.,Peters-Golden,M.(1998)5-Lipoxygenasereactionproductsmodulatealveolarmacrophagephago-cytosisofKlebsiellapneumoniae.Infect.Immun.66,5140–5146.

131.

Gaudreault,E.,Stankova,J.,Rola-Pleszczynski,M.(2005)InvolvementofleukotrieneB4receptor1signalinginplatelet-activatingfactor-mediatedneutrophildegranulationandchemotaxis.ProstaglandinsOtherLipidMediat.75,25–34.

132.

Serezani,C.H.,Aronoff,D.M.,Jancar,S.,Mancuso,P.,Peters-Golden,M.(2005)LeukotrienesenhancethebactericidalactivityofalveolarmacrophagesagainstKlebsiellapneumoniaethroughtheactivationofNADPHoxidase.Blood106,1067–1075.

133.

Talvani,A.,Machado,F.S.,Santana,G.C.,Klein,A.,Barcelos,L.,Silva,J.S.,Teixeira,M.M.(2002)LeukotrieneB(4)inducesnitricoxidesynthesisinTrypanosomacruzi-infectedmurinemacrophagesandme-diatesresistancetoinfection.Infect.Immun.70,4247–4253.

134.Park,J.Y.,Pillinger,M.H.,Abramson,S.B.(2006)ProstaglandinE2synthesisandsecretion:theroleofPGE2synthases.Clin.Immunol.119,229–240.

135.Davies,P.,Bailey,P.J.,Goldenberg,M.M.,Ford-Hutchinson,A.W.(1984)Theroleofarachidonicacidoxygenationproductsinpainandinflammation.Annu.Rev.Immunol.2,335–357.

136.

Bombardieri,S.,Cattani,P.,Ciabattoni,G.,DiMunno,O.,Pasero,G.,Patrono,C.,Pinca,E.,Pugliese,F.(1981)Thesynovialprostaglandinsysteminchronicinflammatoryarthritis:differentialeffectsofsteroidalandnonsteroidalanti-inflammatorydrugs.Br.J.Pharmacol.73,893–901.

137.

Hardy,M.M.,Seibert,K.,Manning,P.T.,Currie,M.G.,Woerner,B.M.,Edwards,D.,Koki,A.,Tripp,C.S.(2002)Cyclooxygenase2-dependent

http://www.jleukbio.org

138.

139.140.141.142.143.

144.

145.

146.

147.

148.

149.

150.151.

152.

153.

154.155.

156.

prostaglandinE2modulatescartilageproteoglycandegradationinhumanosteoarthritisexplants.ArthritisRheum.46,1789–1803.

Westman,M.,Korotkova,M.,afKlint,E.,Stark,A.,Audoly,L.P.,Klareskog,L.,Ulfgren,A.K.,Jakobsson,P.J.(2004)ExpressionofmicrosomalprostaglandinEsynthase1inrheumatoidarthritissynovium.ArthritisRheum.50,1774–1780.

Claria,J.,Romano,M.(2005)Pharmacologicalinterventionofcycloox-ygenase-2and5-lipoxygenasepathways.Impactoninflammationandcancer.Curr.Pharm.Des.11,3431–3447.

Sugimoto,Y.,Narumiya,S.,Ichikawa,A.(2000)Distributionandfunc-tionofprostanoidreceptors:studiesfromknockoutmice.Prog.LipidRes.39,289–314.

Kobayashi,T.,Narumiya,S.(2002)Prostanoidsinhealthanddisease;lessonsfromreceptor-knockoutmice.Adv.Exp.Med.Biol.507,593–597.

Kobayashi,T.,Narumiya,S.(2002)Functionofprostanoidreceptors:studiesonknockoutmice.ProstaglandinsOtherLipidMediat.68-69,557–573.

Segi,E.,Sugimoto,Y.,Yamasaki,A.,Aze,Y.,Oida,H.,Nishimura,T.,Murata,T.,Matsuoka,T.,Ushikubi,F.,Hirose,M.,Tanaka,T.,Yoshida,N.,Narumiya,S.,Ichikawa,A.(1998)PatentductusarteriosusandneonataldeathinprostaglandinreceptorEP4-deficientmice.Biochem.Biophys.Res.Commun.246,7–12.

Miyaura,C.,Inada,M.,Suzawa,T.,Sugimoto,Y.,Ushikubi,F.,Ichikawa,A.,Narumiya,S.,Suda,T.(2000)Impairedboneresorptiontoprosta-glandinE2inprostaglandinEreceptorEP4-knockoutmice.J.Biol.Chem.275,19819–19823.

Ushikubi,F.,Segi,E.,Sugimoto,Y.,Murata,T.,Matsuoka,T.,Koba-yashi,T.,Hizaki,H.,Tuboi,K.,Katsuyama,M.,Ichikawa,A.,Tanaka,T.,Yoshida,N.,Narumiya,S.(1998)ImpairedfebrileresponseinmicelackingtheprostaglandinEreceptorsubtypeEP3.Nature395,281–284.

Takeuchi,K.,Ukawa,H.,Kato,S.,Furukawa,O.,Araki,H.,Sugimoto,Y.,Ichikawa,A.,Ushikubi,F.,Narumiya,S.(1999)Impairedduodenalbicarbonatesecretionandmucosalintegrityinmicelackingprostaglan-dinE-receptorsubtypeEP(3).Gastroenterology117,1128–1135.

Hizaki,H.,Segi,E.,Sugimoto,Y.,Hirose,M.,Saji,T.,Ushikubi,F.,Matsuoka,T.,Noda,Y.,Tanaka,T.,Yoshida,N.,Narumiya,S.,Ichikawa,A.(1999)AbortiveexpansionofthecumulusandimpairedfertilityinmicelackingtheprostaglandinEreceptorsubtypeEP(2).Proc.Natl.Acad.Sci.USA96,10501–10506.

Tilley,S.L.,Audoly,L.P.,Hicks,E.H.,Kim,H.S.,Flannery,P.J.,Coffman,T.M.,Koller,B.H.(1999)ReproductivefailureandreducedbloodpressureinmicelackingtheEP2prostaglandinE2receptor.J.Clin.Invest.103,1539–1545.

Watanabe,K.,Kawamori,T.,Nakatsugi,S.,Ohta,T.,Ohuchida,S.,Yamamoto,H.,Maruyama,T.,Kondo,K.,Ushikubi,F.,Narumiya,S.,Sugimura,T.,Wakabayashi,K.(1999)RoleoftheprostaglandinEreceptorsubtypeEP1incoloncarcinogenesis.CancerRes.59,5093–5096.

Kunkel,S.L.,Wiggins,R.C.,Chensue,S.W.,Larrick,J.(1986)Regulationofmacrophagetumornecrosisfactorproductionbyprosta-glandinE2.Biochem.Biophys.Res.Commun.137,404–410.

Bailly,S.,Ferrua,B.,Fay,M.,Gougerot-Pocidalo,M.A.(1990)Differ-entialregulationofIL6,IL1A,IL1␤andTNF␣productioninLPS-stimulatedhumanmonocytes:roleofcyclicAMP.Cytokine2,205–210.

Knudsen,P.J.,Dinarello,C.A.,Strom,T.B.(1986)Prostaglandinsposttranscriptionallyinhibitmonocyteexpressionofinterleukin1activ-itybyincreasingintracellularcyclicadenosinemonophosphate.J.Im-munol.137,3189–3194.

Standiford,T.J.,Kunkel,S.L.,Rolfe,M.W.,Evanoff,H.L.,Allen,R.M.,Strieter,R.M.(1992)Regulationofhumanalveolarmacrophage-andbloodmonocyte-derivedinterleukin-8byprostaglandinE2anddexamethasone.Am.J.Respir.CellMol.Biol.6,75–81.

VanderPouwKraan,T.C.,Boeije,L.C.,Smeenk,R.J.,Wijdenes,J.,Aarden,L.A.(1995)Prostaglandin-E2isapotentinhibitorofhumaninterleukin12production.J.Exp.Med.181,775–779.

Shinomiya,S.,Naraba,H.,Ueno,A.,Utsunomiya,I.,Maruyama,T.,Ohuchida,S.,Ushikubi,F.,Yuki,K.,Narumiya,S.,Sugimoto,Y.,Ichikawa,A.,Oh-ishi,S.(2001)RegulationofTNF␣andinterleukin-10productionbyprostaglandinsI(2)andE(2):studieswithprostaglandinreceptor-deficientmiceandprostaglandinE-receptorsubtype-selectivesyntheticagonists.Biochem.Pharmacol.61,1153–1160.

Kuroda,E.,Sugiura,T.,Okada,K.,Zeki,K.,Yamashita,U.(2001)ProstaglandinE2up-regulatesmacrophage-derivedchemokineproduc-tionbutsuppressesIFN-inducibleprotein-10productionbyAPC.J.Im-munol.166,1650–1658.157.Betz,M.,Fox,B.S.(1991)ProstaglandinE2inhibitsproductionofTh1

lymphokinesbutnotofTh2lymphokines.J.Immunol.146,108–113.158.Demeure,C.E.,Yang,L.P.,Desjardins,C.,Raynauld,P.,Delespesse,

G.(1997)ProstaglandinE2primesnaiveTcellsfortheproductionofanti-inflammatorycytokines.Eur.J.Immunol.27,3526–3531.

159.Katamura,K.,Shintaku,N.,Yamauchi,Y.,Fukui,T.,Ohshima,Y.,

Mayumi,M.,Furusho,K.(1995)ProstaglandinE2atprimingofnaiveCD4ϩTcellsinhibitsacquisitionofabilitytoproduceIFN-␥andIL-2,butnotIL-4andIL-5.J.Immunol.155,4604–4612.

160.Wu,C.Y.,Wang,K.,McDyer,J.F.,Seder,R.A.(1998)Prostaglandin

E2anddexamethasoneinhibitIL-12receptorexpressionandIL-12responsiveness.J.Immunol.161,2723–2730.

161.Tigyi,G.(2001)Physiologicalresponsestolysophosphatidicacidand

relatedglycero-phospholipids.Prostaglandins64,47–62.

162.Goetzl,E.J.,An,S.(1998)Diversityofcellularreceptorsandfunctions

forthelysophospholipidgrowthfactorslysophosphatidicacidandsphin-gosine1-phosphate.FASEBJ.12,1589–1598.

163.Hla,T.,Lee,M.J.,Ancellin,N.,Paik,J.H.,Kluk,M.J.(2001)

Lysophospholipids—receptorrevelations.Science294,1875–1878.164.Balazs,L.,Okolicany,J.,Ferrebee,M.,Tigyi,G.(2000)Topicalappli-cationofLPAaccelerateswoundhealing.Ann.N.Y.Acad.Sci.905,270–273.

165.Balazs,L.,Okolicany,J.,Ferrebee,M.,Tolley,B.,Tigyi,G.(2001)

Topicalapplicationofthephospholipidgrowthfactorlysophosphatidicacidpromoteswoundhealinginvivo.Am.J.Physiol.Regul.Integr.Comp.Physiol.280,R466–R472.

166.Rizza,C.,Leitinger,N.,Yue,J.,Fischer,D.J.,Wang,D.A.,Shih,P.T.,

Lee,H.,Tigyi,G.,Berliner,J.A.(1999)Lysophosphatidicacidasaregulatorofendothelial/leukocyteinteraction.Lab.Invest.79,1227–1235.

167.Hornuss,C.,Hammermann,R.,Fuhrmann,M.,Juergens,U.R.,Racke,

K.(2001)HumanandratalveolarmacrophagesexpressmultipleEDGreceptors.Eur.J.Pharmacol.429,303–308.

168.Sester,D.P.,Brion,K.,Trieu,A.,Goodridge,H.S.,Roberts,T.L.,Dunn,

J.,Hume,D.A.,Stacey,K.J.,Sweet,M.J.(2006)CpGDNAactivatessurvivalinmurinemacrophagesthroughTLR9andthephosphatidylino-sitol3-kinase-Aktpathway.J.Immunol.177,4473–4480.

169.Koh,J.S.,Lieberthal,W.,Heydrick,S.,Levine,J.S.(1998)Lysophos-phatidicacidisamajorserumnoncytokinesurvivalfactorformurinemacrophageswhichactsviathephosphatidylinositol3-kinasesignalingpathway.J.Clin.Invest.102,716–727.

170.Baud,V.,Chissoe,S.L.,Viegas-Pequignot,E.,Diriong,S.,N’Guyen,

V.C.,Roe,B.A.,Lipinski,M.(1995)EMR1,anunusualmemberinthefamilyofhormonereceptorswithseventransmembranesegments.Genomics26,334–344.

171.McKnight,A.J.,Macfarlane,A.J.,Dri,P.,Turley,L.,Willis,A.C.,

Gordon,S.(1996)MolecularcloningofF4/80,amurinemacrophage-restrictedcellsurfaceglycoproteinwithhomologytotheG-protein-linkedtransmembrane7hormonereceptorfamily.J.Biol.Chem.271,486–489.

172.Gordon,S.,Crocker,P.R.,Morris,L.,Lee,S.H.,Perry,V.H.,Hume,

D.A.(1986)Localizationandfunctionoftissuemacrophages.CibaFound.Symp.118,54–67.

173.Lin,H.H.,Faunce,D.E.,Stacey,M.,Terajewicz,A.,Nakamura,T.,

Zhang-Hoover,J.,Kerley,M.,Mucenski,M.L.,Gordon,S.,Stein-Streilein,J.(2005)ThemacrophageF4/80receptorisrequiredfortheinductionofantigen-specificefferentregulatoryTcellsinperipheraltolerance.J.Exp.Med.201,1615–1625.

174.Stacey,M.,Chang,G.W.,Davies,J.Q.,Kwakkenbos,M.J.,Sanderson,

R.D.,Hamann,J.,Gordon,S.,Lin,H.H.(2003)Theepidermalgrowthfactor-likedomainsofthehumanEMR2receptormediatecellattach-mentthroughchondroitinsulfateglycosaminoglycans.Blood102,2916–2924.

175.Stacey,M.,Chang,G.W.,Sanos,S.L.,Chittenden,L.R.,Stubbs,L.,

Gordon,S.,Lin,H.H.(2002)EMR4,anovelepidermalgrowthfactor(EGF)-TM7moleculeup-regulatedinactivatedmousemacrophages,bindstoaputativecellularligandonBlymphomacelllineA20.J.Biol.Chem.277,29283–29293.

176.Jaspars,L.H.,Vos,W.,Aust,G.,VanLier,R.A.,Hamann,J.(2001)

TissuedistributionofthehumanCD97EGF-TM7receptor.TissueAn-tigens57,325–331.

177.Eichler,W.,Hamann,J.,Aust,G.(1997)Expressioncharacteristicsof

thehumanCD97antigen.TissueAntigens50,429–438.

178.Kop,E.N.,Kwakkenbos,M.J.,Teske,G.J.,Kraan,M.C.,Smeets,T.J.,

Stacey,M.,Lin,H.H.,Tak,P.P.,Hamann,J.(2005)Identificationoftheepidermalgrowthfactor-TM7receptorEMR2anditsliganddermatansulfateinrheumatoidsynovialtissue.ArthritisRheum.52,442–450.

Lattinetal.GPCRexpressionandfunctioninmacrophages29

179.Stacey,M.,Lin,H.H.,Hilyard,K.L.,Gordon,S.,McKnight,A.J.(2001)

Humanepidermalgrowthfactor(EGF)module-containingmucin-likehormonereceptor3isanewmemberoftheEGF-TM7familythatrecognizesaligandonhumanmacrophagesandactivatedneutrophils.J.Biol.Chem.276,18863–18870.

180.Su,A.I.,Wiltshire,T.,Batalov,S.,Lapp,H.,Ching,K.A.,Block,D.,

Zhang,J.,Soden,R.,Hayakawa,M.,Kreiman,G.,Cooke,M.P.,Walker,J.R.,Hogenesch,J.B.(2004)Ageneatlasofthemouseandhumanprotein-encodingtranscriptomes.Proc.Natl.Acad.Sci.USA101,6062–6067.

181.Martinez,F.O.,Gordon,S.,Locati,M.,Mantovani,A.(2006)Transcrip-tionalprofilingofthehumanmonocyte-to-macrophagedifferentiationandpolarization:newmoleculesandpatternsofgeneexpression.J.Immunol.177,7303–7311.

182.Nataraj,C.,Thomas,D.W.,Tilley,S.L.,Nguyen,M.T.,Mannon,R.,

Koller,B.H.,Coffman,T.M.(2001)ReceptorsforprostaglandinE(2)thatregulatecellularimmuneresponsesinthemouse.J.Clin.Invest.108,1229–1235.

183.Fennekohl,A.,Sugimoto,Y.,Segi,E.,Maruyama,T.,Ichikawa,A.,

Puschel,G.P.(2002)ContributionofthetwoGs-coupledPGE2-recep-torsEP2-receptorandEP4-receptortotheinhibitionbyPGE2oftheLPS-inducedTNF␣-formationinKupffercellsfromEP2-orEP4-recep-tor-deficientmice.PivotalrolefortheEP4-receptorinwildtypeKupffercells.J.Hepatol.36,328–334.

184.Carninci,P.,Kasukawa,T.,Katayama,S.,Gough,J.,Frith,M.C.,Maeda,

N.,Oyama,R.,Ravasi,T.,Lenhard,B.,Wells,C.,etal.(2005)Thetranscriptionallandscapeofthemammaliangenome.Science309,1559–1563.

185.Xie,Y.,vonGavel,S.,Cassady,A.I.,Stacey,K.J.,Dunn,T.L.,Hume,

D.A.(1993)Theresistanceofmacrophage-liketumorcelllinestogrowthinhibitionbylipopolysaccharideandpertussistoxin.Br.J.Haematol.84,392–401.

186.Jakway,J.P.,DeFranco,A.L.(1986)PertussistoxininhibitionofBcell

andmacrophageresponsestobacteriallipopolysaccharide.Science234,743–746.

187.Daniel-Issakani,S.,Spiegel,A.M.,Strulovici,B.(1989)Lipopolysac-charideresponseislinkedtotheGTPbindingprotein,Gi2,inthepromonocyticcelllineU937.J.Biol.Chem.264,20240–20247.

188.Zhang,X.,Morrison,D.C.(1993)Pertussistoxin-sensitivefactordiffer-entiallyregulateslipopolysaccharide-inducedtumornecrosisfactor-␣andnitricoxideproductioninmouseperitonealmacrophages.J.Immu-nol.150,1011–1018.

189.Katakami,Y.,Nakao,Y.,Koizumi,T.,Katakami,N.,Ogawa,R.,Fujita,

T.(1988)Regulationoftumornecrosisfactorproductionbymouseperitonealmacrophages:theroleofcellularcyclicAMP.Immunology64,719–724.

190.Fan,H.,Peck,O.M.,Tempel,G.E.,Halushka,P.V.,Cook,J.A.(2004)

Toll-likereceptor4coupledGIproteinsignalingpathwaysregulateextracellularsignal-regulatedkinasephosphorylationandAP-1activa-tionindependentofNF␬Bactivation.Shock22,57–62.

191.Ferlito,M.,Romanenko,O.G.,Guyton,K.,Ashton,S.,Squadrito,F.,

Halushka,P.V.,Cook,J.A.(2002)ImplicationofG␣iproteinsandSrctyrosinekinasesinendotoxin-inducedsignaltransductioneventsandmediatorproduction.J.EndotoxinRes.8,427–435.

192.Ferlito,M.,Squadrito,F.,Halushka,P.V.,Cook,J.A.(2001)Signal

transductioneventsinChinesehamsterovarycellsexpressinghumanCD14;effectofendotoxindesensitization.Shock15,291–296.

193.Fan,H.,Zingarelli,B.,Peck,O.M.,Teti,G.,Tempel,G.E.,Halushka,

P.V.,Cook,J.A.(2005)Lipopolysaccharide-andgram-positivebacte-ria-inducedcellularinflammatoryresponses:roleofheterotrimericG␣(i)proteins.Am.J.Physiol.CellPhysiol.289,C293–C301.

194.Triantafilou,K.,Triantafilou,M.,Dedrick,R.L.(2001)ACD14-inde-pendentLPSreceptorcluster.Nat.Immunol.2,338–345.

195.Hsu,M.H.,Wang,M.,Browning,D.D.,Mukaida,N.,Ye,R.D.(1999)

NF-␬BactivationisrequiredforC5a-inducedinterleukin-8geneexpres-sioninmononuclearcells.Blood93,3241–3249.

196.Wu,D.,LaRosa,G.J.,Simon,M.I.(1993)Gprotein-coupledsignal

transductionpathwaysforinterleukin-8.Science261,101–103.

197.AmatrudaIII,T.T.,Gerard,N.P.,Gerard,C.,Simon,M.I.(1993)

SpecificinteractionsofchemoattractantfactorreceptorswithG-proteins.J.Biol.Chem.268,10139–10144.

198.Yang,M.,Sang,H.,Rahman,A.,Wu,D.,Malik,A.B.,Ye,R.D.(2001)

G␣16coupleschemoattractantreceptorstoNF-␬Bactivation.J.Im-munol.166,6885–6892.

199.Spiegelberg,B.D.,Hamm,H.E.(2005)G␤␥bindshistonedeacetylase

5(HDAC5)andinhibitsitstranscriptionalco-repressionactivity.J.Biol.Chem.280,41769–41776.30JournalofLeukocyteBiologyVolume82,July2007200.Croze,E.,Usacheva,A.,Asarnow,D.,Minshall,R.D.,Perez,H.D.,

Colamonici,O.(2000)ReceptorforactivatedC-kinase(RACK-1),aWDmotif-containingprotein,specificallyassociateswiththehumantypeIIFNreceptor.J.Immunol.165,5127–5132.

201.Usacheva,A.,Smith,R.,Minshall,R.,Baida,G.,Seng,S.,Croze,E.,

Colamonici,O.(2001)TheWDmotif-containingproteinreceptorforactivatedproteinkinaseC(RACK1)isrequiredforrecruitmentandactivationofsignaltransducerandactivatoroftranscription1throughthetypeIinterferonreceptor.J.Biol.Chem.276,22948–22953.202.Zhang,W.,Zong,C.S.,Hermanto,U.,Lopez-Bergami,P.,Ronai,Z.,

Wang,L.H.(2006)RACK1recruitsSTAT3specificallytoinsulinandinsulin-likegrowthfactor1receptorsforactivation,whichisimportantforregulatinganchorage-independentgrowth.Mol.Cell.Biol.26,413–424.

203.Wieland,T.,Mittmann,C.(2003)RegulatorsofG-proteinsignaling:

multifunctionalproteinswithimpactonsignalinginthecardiovascularsystem.Pharmacol.Ther.97,95–115.

204.Hepler,J.R.(1999)EmergingrolesforRGSproteinsincellsignaling.

TrendsPharmacol.Sci.20,376–382.

205.Hausmann,O.N.,Hu,W.H.,Keren-Raifman,T.,Witherow,D.S.,

Wang,Q.,Levay,K.,Frydel,B.,ZSlepak,V.,Bethea,J.(2002)SpinalcordinjuryinducesexpressionofRGS7inmicroglia/macrophagesinrats.Eur.J.Neurosci.15,602–612.

206.Bowman,E.P.,Campbell,J.J.,Druey,K.M.,Scheschonka,A.,Kehrl,

J.H.,Butcher,E.C.(1998)RegulationofchemotacticandproadhesiveresponsestochemoattractantreceptorsbyRGS(regulatorofG-proteinsignaling)familymembers.J.Biol.Chem.273,28040–28048.

207.Moratz,C.,Kang,V.H.,Druey,K.M.,Shi,C.S.,Scheschonka,A.,

Murphy,P.M.,Kozasa,T.,Kehrl,J.H.(2000)RegulatorofGproteinsignaling1(RGS1)markedlyimpairsGi␣signalingresponsesofBlymphocytes.J.Immunol.164,1829–1838.

208.Lippert,E.,Yowe,D.L.,Gonzalo,J.A.,Justice,J.P.,Webster,J.M.,

Fedyk,E.R.,Hodge,M.,Miller,C.,Gutierrez-Ramos,J.C.,Borrego,F.,Keane-Myers,A.,Druey,K.M.(2003)RoleofregulatorofGproteinsignaling16ininflammation-inducedTlymphocytemigrationandacti-vation.J.Immunol.171,1542–1555.

209.Reif,K.,Cyster,J.G.(2000)RGSmoleculeexpressioninmurineB

lymphocytesandabilitytodown-regulatechemotaxistolymphoidche-mokines.J.Immunol.164,4720–4729.

210.Moratz,C.,Hayman,J.R.,Gu,H.,Kehrl,J.H.(2004)AbnormalB-cell

responsestochemokines,disturbedplasmacelllocalization,anddis-tortedimmunetissuearchitectureinRgs1Ϫ/Ϫmice.Mol.Cell.Biol.24,5767–5775.

211.Denecke,B.,Meyerdierks,A.,Bottger,E.C.(1999)RGS1isexpressed

inmonocytesandactsasaGTPase-activatingproteinforG-protein-coupledchemoattractantreceptors.J.Biol.Chem.274,26860–26868.212.Kuemmerle,J.F.,Murthy,K.S.(2001)Couplingoftheinsulin-like

growthfactor-IreceptortyrosinekinasetoGi2inhumanintestinalsmoothmuscle:G␤␥-dependentmitogen-activatedproteinkinaseacti-vationandgrowth.J.Biol.Chem.276,7187–7194.

213.Luttrell,L.M.,vanBiesen,T.,Hawes,B.E.,Koch,W.J.,Touhara,K.,

Lefkowitz,R.J.(1995)G␤␥subunitsmediatemitogen-activatedproteinkinaseactivationbythetyrosinekinaseinsulin-likegrowthfactor1receptor.J.Biol.Chem.270,16495–16498.

214.DeVries,L.,Lou,X.,Zhao,G.,Zheng,B.,Farquhar,M.G.(1998)GIPC,

aPDZdomaincontainingprotein,interactsspecificallywiththeCterminusofRGS-GAIP.Proc.Natl.Acad.Sci.USA95,12340–12345.215.Booth,R.A.,Cummings,C.,Tiberi,M.,Liu,X.J.(2002)GIPCpartic-ipatesinGproteinsignalingdownstreamofinsulin-likegrowthfactor1receptor.J.Biol.Chem.277,6719–6725.

216.Lou,X.,Yano,H.,Lee,F.,Chao,M.V.,Farquhar,M.G.(2001)GIPC

andGAIPformacomplexwithTrkA:aputativelinkbetweenGproteinandreceptortyrosinekinasepathways.Mol.Biol.Cell12,615–627.217.Long,E.,Huynh,H.T.,Zhao,X.(1998)Involvementofinsulin-like

growthfactor-1anditsbindingproteinsinproliferationanddifferentia-tionofmurinebonemarrow-derivedmacrophageprecursors.Endocrine9,185–192.

218.Smith,J.R.,Benghuzzi,H.,Tucci,M.,Puckett,A.,Hughes,J.L.(2000)

Theeffectsofgrowthhormoneandinsulin-likegrowthfactorontheproliferationrateandmorphologyofRAW264.7macrophages.Biomed.Sci.Instrum.36,111–116.

219.Pitcher,J.A.,Freedman,N.J.,Lefkowitz,R.J.(1998)Gprotein-coupled

receptorkinases.Annu.Rev.Biochem.67,653–692.

220.Penn,R.B.,Pronin,A.N.,Benovic,J.L.(2000)RegulationofG

protein-coupledreceptorkinases.TrendsCardiovasc.Med.10,81–89.221.Chuang,T.T.,Sallese,M.,Ambrosini,G.,Parruti,G.,DeBlasi,A.

(1992)Highexpressionof␤-adrenergicreceptorkinaseinhumanpe-

http://www.jleukbio.org

222.

223.

224.

225.

226.227.

228.

229.

230.

231.232.

233.234.

235.

236.237.

238.

239.

240.

ripheralbloodleukocytes.Isoproterenolandplateletactivatingfactorcaninducekinasetranslocation.J.Biol.Chem.267,6886–6892.

Loudon,R.P.,Perussia,B.,Benovic,J.L.(1996)DifferentiallyregulatedexpressionoftheG-protein-coupledreceptorkinases,␤ARKandGRK6,duringmyelomonocyticcelldevelopmentinvitro.Blood88,4547–4557.

Mak,J.C.,Hisada,T.,Salmon,M.,Barnes,P.J.,Chung,K.F.(2002)GlucocorticoidsreverseIL-1␤-inducedimpairmentof␤-adrenoceptor-mediatedrelaxationandup-regulationofG-protein-coupledreceptorkinases.Br.J.Pharmacol.135,987–996.

Lombardi,M.S.,Kavelaars,A.,Penela,P.,Scholtens,E.J.,Roccio,M.,Schmidt,R.E.,Schedlowski,M.,MayorJr.,F.,Heijnen,C.J.(2002)OxidativestressdecreasesGprotein-coupledreceptorkinase2inlym-phocytesviaacalpain-dependentmechanism.Mol.Pharmacol.62,379–388.

Lombardi,M.S.,Kavelaars,A.,Schedlowski,M.,Bijlsma,J.W.,Oki-hara,K.L.,VandePol,M.,Ochsmann,S.,Pawlak,C.,Schmidt,R.E.,Heijnen,C.J.(1999)DecreasedexpressionandactivityofG-protein-coupledreceptorkinasesinperipheralbloodmononuclearcellsofpa-tientswithrheumatoidarthritis.FASEBJ.13,715–725.

Fan,J.,Malik,A.B.(2003)Toll-likereceptor-4(TLR4)signalingaug-mentschemokine-inducedneutrophilmigrationbymodulatingcellsur-faceexpressionofchemokinereceptors.Nat.Med.9,315–321.

Vroon,A.,Lombardi,M.S.,Kavelaars,A.,Heijnen,C.J.(2003)ChangesintheG-protein-coupledreceptordesensitizationmachineryduringre-lapsing-progressiveexperimentalallergicencephalomyelitis.J.Neuro-immunol.137,79–86.

Vroon,A.,Kavelaars,A.,Limmroth,V.,Lombardi,M.S.,Goebel,M.U.,VanDam,A.M.,Caron,M.G.,Schedlowski,M.,Heijnen,C.J.(2005)Gprotein-coupledreceptorkinase2inmultiplesclerosisandexperi-mentalautoimmuneencephalomyelitis.J.Immunol.174,4400–4406.Vroon,A.,Heijnen,C.J.,Lombardi,M.S.,Cobelens,P.M.,MayorJr.,F.,Caron,M.G.,Kavelaars,A.(2004)ReducedGRK2levelinTcellspotentiateschemotaxisandsignalinginresponsetoCCL4.J.Leukoc.Biol.75,901–909.

Ribas,C.,Penela,P.,Murga,C.,Salcedo,A.,Garcia-Hoz,C.,Jurado-Pueyo,M.,Aymerich,I.,MayorJr.,F.(2007)TheGprotein-coupledreceptorkinase(GRK)interactome:roleofGRKsinGPCRregulationandsignaling.Biochim.Biophys.Acta1768,913–922.

Vroon,A.,Heijnen,C.J.,Kavelaars,A.(2006)GRKsandarrestins:regulatorsofmigrationandinflammation.J.Leukoc.Biol.80,1214–1221.

Pitcher,J.A.,Hall,R.A.,Daaka,Y.,Zhang,J.,Ferguson,S.S.,Hester,S.,Miller,S.,Caron,M.G.,Lefkowitz,R.J.,Barak,L.S.(1998)TheGprotein-coupledreceptorkinase2isamicrotubule-associatedproteinkinasethatphosphorylatestubulin.J.Biol.Chem.273,12316–12324.Pronin,A.N.,Morris,A.J.,Surguchov,A.,Benovic,J.L.(2000)SynucleinsareanovelclassofsubstratesforGprotein-coupledreceptorkinases.J.Biol.Chem.275,26515–26522.

Ruiz-Gomez,A.,Humrich,J.,Murga,C.,Quitterer,U.,Lohse,M.J.,MayorJr.,F.(2000)Phosphorylationofphosducinandphosducin-likeproteinbyGprotein-coupledreceptorkinase2.J.Biol.Chem.275,29724–29730.

NagaPrasad,S.V.,Laporte,S.A.,Chamberlain,D.,Caron,M.G.,Barak,L.,Rockman,H.A.(2002)Phosphoinositide3-kinaseregulates␤2-adrenergicreceptorendocytosisbyAP-2recruitmenttothereceptor/␤-arrestincomplex.J.CellBiol.158,563–575.

Day,P.W.,Carman,C.V.,Sterne-Marr,R.,Benovic,J.L.,Wedegaert-ner,P.B.(2003)DifferentialinteractionofGRK2withmembersoftheG␣qfamily.Biochemistry42,9176–9184.

Premont,R.T.,Claing,A.,Vitale,N.,Freeman,J.L.,Pitcher,J.A.,Patton,W.A.,Moss,J.,Vaughan,M.,Lefkowitz,R.J.(1998)␤2-AdrenergicreceptorregulationbyGIT1,aGprotein-coupledreceptorkinase-associatedADPribosylationfactorGTPase-activatingprotein.Proc.Natl.Acad.Sci.USA95,14082–14087.

Sallese,M.,Mariggio,S.,D’Urbano,E.,Iacovelli,L.,DeBlasi,A.(2000)SelectiveregulationofGqsignalingbyGprotein-coupledreceptorkinase2:directinteractionofkinaseNterminuswithactivatedg␣q.Mol.Pharmacol.57,826–831.

Jimenez-Sainz,M.C.,Murga,C.,Kavelaars,A.,Jurado-Pueyo,M.,Krakstad,B.F.,Heijnen,C.J.,MayorJr.,F.,Aragay,A.M.(2006)Gprotein-coupledreceptorkinase2negativelyregulateschemokinesig-nalingataleveldownstreamfromGproteinsubunits.Mol.Biol.Cell17,25–31.

Liu,S.,Premont,R.T.,Kontos,C.D.,Zhu,S.,Rockey,D.C.(2005)AcrucialroleforGRK2inregulationofendothelialcellnitricoxidesynthasefunctioninportalhypertension.Nat.Med.11,952–958.241.Carman,C.V.,Parent,J.L.,Day,P.W.,Pronin,A.N.,Sternweis,P.M.,

Wedegaertner,P.B.,Gilman,A.G.,Benovic,J.L.,Kozasa,T.(1999)SelectiveregulationofG␣(q/11)byanRGSdomainintheGprotein-coupledreceptorkinase,GRK2.J.Biol.Chem.274,34483–34492.242.Tesmer,V.M.,Kawano,T.,Shankaranarayanan,A.,Kozasa,T.,Tesmer,

J.J.(2005)SnapshotofactivatedGproteinsatthemembrane:theG␣q-GRK2-G␤␥complex.Science310,1686–1690.

243.Usui,H.,Nishiyama,M.,Moroi,K.,Shibasaki,T.,Zhou,J.,Ishida,J.,

Fukamizu,A.,Haga,T.,Sekiya,S.,Kimura,S.(2000)RGSdomainintheamino-terminusofGprotein-coupledreceptorkinase2inhibitsGq-mediatedsignaling.Int.J.Mol.Med.5,335–340.

244.Parameswaran,N.,Pao,C.S.,Leonhard,K.S.,Kang,D.S.,Kratz,M.,

Ley,S.C.,Benovic,J.L.(2006)Arrestin-2andGprotein-coupledreceptorkinase5interactwithNF␬B1p105andnegativelyregulatelipopolysaccharide-stimulatedERK1/2activationinmacrophages.J.Biol.Chem.281,34159–34170.

245.Gao,J.,Li,J.,Chen,Y.,Ma,L.(2005)Activationoftyrosinekinaseof

EGFRinducesG␤␥-dependentGRK-EGFRcomplexformation.FEBSLett.579,122–126.

246.Ho,J.,Cocolakis,E.,Dumas,V.M.,Posner,B.I.,Laporte,S.A.,Lebrun,

J.J.(2005)TheGprotein-coupledreceptorkinase-2isaTGF␤-induc-ibleantagonistofTGF␤signaltransduction.EMBOJ.24,3247–3258.247.Pierce,K.L.,Lefkowitz,R.J.(2001)Classicalandnewrolesof␤-ar-restinsintheregulationofG-protein-coupledreceptors.Nat.Rev.Neu-rosci.2,727–733.

248.Lefkowitz,R.J.,Whalen,E.J.(2004)␤-Arrestins:trafficcopsofcell

signaling.Curr.Opin.CellBiol.16,162–168.

249.Shenoy,S.K.,Lefkowitz,R.J.(2003)Multifacetedrolesof␤-arrestinsin

theregulationofseven-membrane-spanningreceptortraffickingandsig-naling.Biochem.J.375,503–515.

250.Sun,Y.,Cheng,Z.,Ma,L.,Pei,G.(2002)␤-Arrestin2iscritically

involvedinCXCR4-mediatedchemotaxis,andthisismediatedbyitsenhancementofp38MAPKactivation.J.Biol.Chem.277,49212–49219.

251.Ge,L.,Ly,Y.,Hollenberg,M.,DeFea,K.(2003)A␤-arrestin-dependent

scaffoldisassociatedwithprolongedMAPKactivationinpseudopodiaduringprotease-activatedreceptor-2-inducedchemotaxis.J.Biol.Chem.278,34418–34426.

252.Azzi,M.,Charest,P.G.,Angers,S.,Rousseau,G.,Kohout,T.,Bouvier,

M.,Pineyro,G.(2003)␤-Arrestin-mediatedactivationofMAPKbyinverseagonistsrevealsdistinctactiveconformationsforGprotein-coupledreceptors.Proc.Natl.Acad.Sci.USA100,11406–11411.253.Luttrell,L.M.,Roudabush,F.L.,Choy,E.W.,Miller,W.E.,Field,

M.E.,Pierce,K.L.,Lefkowitz,R.J.(2001)Activationandtargetingofextracellularsignal-regulatedkinasesby␤-arrestinscaffolds.Proc.Natl.Acad.Sci.USA98,2449–2454.

254.DeFea,K.A.,Zalevsky,J.,Thoma,M.S.,Dery,O.,Mullins,R.D.,

Bunnett,N.W.(2000)␤-Arrestin-dependentendocytosisofproteinase-activatedreceptor2isrequiredforintracellulartargetingofactivatedERK1/2.J.CellBiol.148,1267–1281.

255.Ahn,S.,Wei,H.,Garrison,T.R.,Lefkowitz,R.J.(2004)Reciprocal

regulationofangiotensinreceptor-activatedextracellularsignal-regu-latedkinasesby␤-arrestins1and2.J.Biol.Chem.279,7807–7811.256.Luttrell,L.M.,Ferguson,S.S.,Daaka,Y.,Miller,W.E.,Maudsley,S.,

DellaRocca,G.J.,Lin,F.,Kawakatsu,H.,Owada,K.,Luttrell,D.K.,Caron,M.g.,Lefkowitz,R.J.(1999)␤-Arrestin-dependentformationof␤2adrenergicreceptor-Srcproteinkinasecomplexes.Science283,655–661.

257.Dai,X.M.,Ryan,G.R.,Hapel,A.J.,Dominguez,M.G.,Russell,R.G.,

Kapp,S.,Sylvestre,V.,Stanley,E.R.(2002)Targeteddisruptionofthemousecolony-stimulatingfactor1receptorgeneresultsinosteopetrosis,mononuclearphagocytedeficiency,increasedprimitiveprogenitorcellfrequencies,andreproductivedefects.Blood99,111–120.

258.Fowles,L.F.,Martin,M.L.,Nelsen,L.,Stacey,K.J.,Redd,D.,Clark,

Y.M.,Nagamine,Y.,McMahon,M.,Hume,D.A.,Ostrowski,M.C.(1998)Persistentactivationofmitogen-activatedproteinkinasesp42andp44andets-2phosphorylationinresponsetocolony-stimulatingfactor1/c-fmssignaling.Mol.Cell.Biol.18,5148–5156.

259.Lin,F.T.,Daaka,Y.,Lefkowitz,R.J.(1998)␤-Arrestinsregulate

mitogenicsignalingandclathrin-mediatedendocytosisoftheinsulin-likegrowthfactorIreceptor.J.Biol.Chem.273,31640–31643.

260.Dalle,S.,Ricketts,W.,Imamura,T.,Vollenweider,P.,Olefsky,J.M.

(2001)Insulinandinsulin-likegrowthfactorIreceptorsutilizedifferentGproteinsignalingcomponents.J.Biol.Chem.276,15688–15695.261.Miller,W.E.,McDonald,P.H.,Cai,S.F.,Field,M.E.,Davis,R.J.,

Lefkowitz,R.J.(2001)Identificationofamotifinthecarboxylterminusof␤-arrestin2responsibleforactivationofJNK3.J.Biol.Chem.276,27770–27777.

Lattinetal.GPCRexpressionandfunctioninmacrophages31

262.McDonald,P.H.,Chow,C.W.,Miller,W.E.,Laporte,S.A.,Field,

M.E.,Lin,F.T.,Davis,R.J.,Lefkowitz,R.J.(2000)␤-Arrestin2:areceptor-regulatedMAPKscaffoldfortheactivationofJNK3.Science290,1574–1577.

263.Himes,S.R.,Sester,D.P.,Ravasi,T.,Cronau,S.L.,Sasmono,T.,Hume,

D.A.(2006)TheJNKareimportantfordevelopmentandsurvivalofmacrophages.J.Immunol.176,2219–2228.

264.Gao,H.,Sun,Y.,Wu,Y.,Luan,B.,Wang,Y.,Qu,B.,Pei,G.(2004)

Identificationof␤-arrestin2asaGprotein-coupledreceptor-stimulatedregulatorofNF-␬Bpathways.Mol.Cell14,303–317.

265.Witherow,D.S.,Garrison,T.R.,Miller,W.E.,Lefkowitz,R.J.

(2004)␤-ArrestininhibitsNF-␬BactivitybymeansofitsinteractionwiththeNF-␬BinhibitorI␬B␣.Proc.Natl.Acad.Sci.USA101,8603–8607.266.Wang,Y.,Tang,Y.,Teng,L.,Wu,Y.,Zhao,X.,Pei,G.(2006)Associ-ationof␤-arrestinandTRAF6negativelyregulatesToll-likereceptor-interleukin1receptorsignaling.Nat.Immunol.7,139–147.

267.Deng,L.,Wang,C.,Spencer,E.,Yang,L.,Braun,A.,You,J.,Slaughter,

C.,Pickart,C.,Chen,Z.J.(2000)ActivationoftheI[␬]BkinasecomplexbyTRAF6requiresadimericubiquitin-conjugatingenzymecomplexandauniquepolyubiquitinchain.Cell103,351–361.

268.Lomaga,M.A.,Yeh,W.C.,Sarosi,I.,Duncan,G.S.,Furlonger,C.,Ho,

A.,Morony,S.,Capparelli,C.,Van,G.,Kaufman,S.,etal.(1999)TRAF6deficiencyresultsinosteopetrosisanddefectiveinterleukin-1,CD40,andLPSsignaling.GenesDev.13,1015–1024.

269.Wang,Y.,Tang,Y.,Teng,L.,Wu,Y.,Zhao,X.,Pei,G.(2006)Associ-ationof␤-arrestinandTRAF6negativelyregulatesToll-likereceptor-interleukin1receptorsignaling.Nat.Immunol.7,139–147.

32JournalofLeukocyteBiologyVolume82,July2007http://www.jleukbio.org

因篇幅问题不能全部显示,请点此查看更多更全内容