我国发展:
据史料记载,早在两千多年前,我国就有了正负数的概念.在三国时期的学者刘徽则首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.
刘徽第一次给出了正负区分正负数的方法.他用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数.
我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一. 外国:
印度人最早在我国之后提出负数,628年左右的婆罗摩笈多(约598-665).他提出了负数的运算法则,并用小点或小圈记在数字上表示负数.在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250).15世纪的舒开(1445?-1510?)和16世纪的
史提非(1553)虽然他们都发现了负数,但又都把负数说成是荒谬的数,卡当(1545)给出了方程的负根,但他把它说成是“假数”.韦达知道负数的存在,但他完全不要负数.笛卡儿部分地接受了负数,他把方程的负根叫假根,因它比“无/零”更小.
哈雷奥特(1560-1621)偶然地把负数单独地写在方程的一边,并用“-”表示它们,但他并不接受负数.邦别利(1526-1572)给出了负数的明确定义.史提文在方程里用了正、负系数,并接受了负根.基拉德(1595-1629)把负数与正数等量齐观、并用减号“-”表示负数.总之在16、17世纪,欧洲人虽然接触了负数,但对负数的接受的进展是缓慢的.
因篇幅问题不能全部显示,请点此查看更多更全内容