整式的乘法习题精选
选择题:
1.下列各式中,正确的是( )
A.t2·t3 = t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t5·t5 = 2t5
答案:A
说明:t4与t2不是同类项,不能合并,B错;同底数幂相乘,底不变,指数相加,所以t3·t4 = t3+4 = t7≠t12,C错;t5•t5 = t5+5 = t10≠2t5,D错;t2•t3 = t2+3 = t5,A正确;答案为A.
2.下列计算错误的是( )
A.−a2·(−a)2 = −a4 B.(−a)2·(−a)4 = a6
C.(−a3)·(−a)2 = a5 D.(−a)·(−a)2 = −a3
答案:C
说明:−a2·(−a)2 = −a2·a2 = −a2+2 = −a4,A计算正确;(−a)2·(−a)4 = a2·a4 = a2+4 = a6,B计算正确;(−a3)·(−a)2 = −a3·a2 = −a5≠a5,C计算错误;(−a)·(−a)2 = −a·a2 = −a3,D计算正确;所以答案为C.
3.下列计算中,运算正确的个数是( )
①5x3−x3 = x3 ② 3m·2n = 6m+n
③am+an = am+n ④xm+1·xm+2 = xm·xm+3
A.1 B. 2 C.3 D.4
答案:A
说明:5x3−x3 = (5−1)x3 = 4x3 ≠x3 ,①错误; 3m与2n 不是同底数幂,它们相乘把底数相乘而指数相加显然是不对的,比如m = 1,n = 2,则 3m·2n = 31·22 = 3·4 = 12,而 6m+n = 61+2 = 63 = 216≠12,②错误;am与an只有在m = n时才是同类项,此时am+an = 2am≠am+n,而在m≠n时,am与an无法合并,③错;xm+1·xm+2 = xm+1+m+2 = xm+m+3 = xm·xm+3,④正确;所以答案为A.
4.计算a6(a2)3的结果等于( )
A.a11 B.a 12 C.a14 D.a36
答案:B
说明:a6(a2)3 = a6·a2×3 = a6·a6 = a6+6 = a12,所以答案为B.
5.下列各式计算中,正确的是( )
A.(a3)3 = a6 B.(−a5)4 = −a 20 C.[(−a)5]3 = a15 D.[(−a)2]3 = a6
答案:D
说明:(a3)3 = a3×3 = a9,A错;(−a5)4 = a5×4 = a20,B错;[(−a)5]3 = (−a)5×3 = (−a)15 = −a15,C错;[(−a)2]3 = (−a)2×3 = (−a)6 = a6,D正确,答案为D.
6.下列各式计算中,错误的是( )
A.(m6)6 = m36 B.(a4)m = (a 2m) 2 C.x2n = (−xn)2 D.x2n = (−x2)n
答案:D
说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−xn)2 = x2n,C计算正确;当n为偶数时,(−x2)n = (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.
7.下列计算正确的是( )
A.(xy)3 = xy3 B.(2xy)3 = 6x3y3
C.(−3x2)3 = 27x5 D.(a2b)n = a2nbn
答案:D
说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y3,B错;(−3x2)3 = (−3)3(x2)3 = −27x6,
C错;(a2b)n = (a2)nbn = a2nbn,D正确,答案为D.
8.下列各式错误的是( )
A.(23)4 = 212 B.(− 2a)3 = − 8a3
C.(2mn2)4 = 16m4n8 D.(3ab)2 = 6a2b2
答案:C
说明:(23)4 = 23×4 = 212,A中式子正确;(− 2a)3 = (−2) 3a3 = − 8a3,B中式子正确;(3ab)2 = 32a2b2 = 9a2b2,C中式子错误;(2mn2)4 = 24m4(n2)4 = 16m4n8,D中式子正确,所以答案为C.
9.下列计算中,错误的是( )
A.mn·m2n+1 = m3n+1 B.(−am−1)2 = a 2m−2
C.(a2b)n = a2nbn D.(−3x2)3 = −9x6
答案:D
说明:mn·m2n+1 = mn+2n+1 = m3n+1,A中计算正确;(−am−1)2 = a2(m−1) = a 2m−2,B中计算正确; (a2b)n = (a2)nbn = a2nbn,C中计算正确;(−3x2)3 = (−3)3(x2)3 = −27x6,D中计算错误;所以答案为D.
10.下列计算中,错误的是( )
A.(−2ab2)2·(− 3a2b)3 = − 108a8b7
B.(2xy)3·(−2xy)2 = 32x5y5
C.(m2n)(−mn2)2 =m4n4
D.(−xy)2(x2y) = x4y3
答案:C
说明:(−2ab2)2·(− 3a2b)3 = (−2) 2a2(b2)2·(−3)3(a2)3b3 = 4a2b4·(−27)a6b3 = − 108a2+6b4+3 = − 108a8b7,A中计算正确;(2xy)3·(−2xy)2 = (2xy)3·(2xy)2 = (2xy)3+2 = (2xy)5 = 25x5y5 = 32x5y5,B中计算正确;(m2n)(−mn2)2 =m2n(−) 2m2(n2)2 =m2n·m2n4 =
m2+2n1+4 =
m4n5,C中计算错误;(−xy)2(x2y) = (−)2x2y2·x2y
=x2y2·x2y = x4y3,D中计算正确,所以答案为C.
11.下列计算结果正确的是( )
A.(6ab2− 4a2b)•3ab = 18ab2− 12a2b
B.(−x)(2x+x2−1) = −x3−2x2+1
C.(−3x2y)(−2xy+3yz−1) = 6x3y2−9x2y2z2+3x2y
D.(a3−b)•2ab =a4b−ab2
答案:D
说明:(6ab2− 4a2b)•3ab = 6ab2·3ab− 4a2b·3ab = 18a2b3− 12a3b,A计算错误;(−x)(2x+x2−1) = −x·2x+(−x)·x2−(−x) = −2x2−x3+x = −x3−2x2+x,B计算错误;(−3x2y)(−2xy+3yz−1) = (−3x2y) • (−2xy)+(−3x2y) •3yz−(−3x2y) = 6x3y2−9x2y2z+3x2y,C计算错误;(a3−b)•2ab = (a3) •2ab−(b)•2ab =a4b−ab2,D计算正确,所以答案为D.
12.若(x−2)(x+3) = x2+a+b,则a、b的值为( )
A.a = 5,b = 6 B.a = 1,b = −6
C.a = 1,b = 6 D.a = 5,b = −6
答案:B
说明:因为(x−2)(x+3) = x•x−2x+3x−6 = x2+x−6,所以a = 1,b = −6,答案为B.
解答题:
1.计算
(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b);
(2)− 2a2b3·(m−n)5·ab2·(n−m)2+a2(m−n)·6ab2;
(3) 3a2( ab2−b)−( 2a2b2−3ab)(− 3a);
(4)(3x2−5y)(x2+2x−3).
解:(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b) = [(−5)×(−3)×(−7)](a3·a·a2)(b2·b2·b)c = − 105a6b 5c.
(2)− 2a2b3·(m−n)5·ab2·(n−m)2+a2(m−n)·6ab2
= (−2·)·(a2·a)·(b3·b2)[(m−n)5·(m−n)2]+(·6)(a2·a)(m−n)b2 = −a3b5(m−n)7+ 2a3b2(m−n).
(3) 3a2( ab2−b)−( 2a2b2−3ab)(− 3a) = 3a2·ab2− 3a2b+ 2a2b2· 3a−3ab· 3a
= a3b2− 3a2b+ 6a3b2− 9a2b = 7a3b2− 12a2b.
(4)(3x2−5y)(x2+2x−3) = 3x2·x2−5y·x2+3x2·2x−5y·2x+3x2·(−3)−5y·(−3)
= 3x4−5x2y+6x3−10xy−9x2+15y
= 3x4+6x3−5x2y−9x2−10xy+15y.
2.当x = −3时,求8x2−(x−2)(x+1)−3(x−1)(x−2)的值.
解:8x2−(x−2)(x+1)−3(x−1)(x−2) = 8x2−(x2−2x+x−2)−3(x2−x−2x+2)
= 8x2−x2+x+2−3x2+9x−6 = 4x2+10x−4.
当x = −3时,原式 = 4·(−3)2+10·(−3)−4 = 36−30−4 = 2.
3.把一个长方形的长减少3,宽增加2,面积不变,若长增加1,宽减少1,则面积减少6,求长方形的面积.
解:设长方形的长为x,宽为y,则由题意有
即
因篇幅问题不能全部显示,请点此查看更多更全内容