小升初数学典型应用题难题解析
1. 路程类难题
甲放学回家需走10分钟,乙放学回家需走14分钟。已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
解析:
如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;
而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。
所以,这120米就是乙路程的2/7-1/7=1/7;
乙回家的路程为:120/(1/7)=840米。
两种基本的方法
方法一:
乙行甲那么远的路,就要14÷(1+1/6)=12分钟
所以甲回家有12÷(1/10-1/12)=720米
所以乙回家的路程是720×(1+1/6)=840米
方法二:
甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟
所以乙回家的路程是12÷(3/35-1/14)=840米
2. 距离类难题
甲、乙两列火车的速度比是5:4,乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
解析:
利用份数来解答:甲车行3份,乙车就行了3×4/5=2.4份,72千米相当于4-2.4=1.6份,每份是72÷1.6=45千米所以A和B两站之间的距离是45×(3+4)=315千米
利用分数来解答:甲车行全程的3/7,乙车就要行全程的3/7×4/5=12/3572千米对应的分率是4/7-12/35=8/35所以全程是72÷8/35=315千米
3. 个数类难题
大、小猴子共35只,它们一起去采摘水蜜桃。猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克。猴王在场监督的时候,每只猴子不论
大小每小时都可以多采摘12千克。一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃。在这个猴群中,共有小猴子几只?
解析:
如果猴王一直不在场,那么35只猴子8小时共可采摘桃子:
4400-35×12×2=3560千克每小时采摘:3560÷8=445千克
假设35只猴子都是大猴子,每小时可采:
35×15=525千克
比实际多:525-445=80千克
而每只小猴子比每只大猴子每小时少采15-11=4千克
所以共有小猴子:80÷4=20只,大猴子:35-15=20只。
4. 用电类难题
某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
解析:
因为33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种情况:
甲超过了50度,乙未达到50度。
因为33=5×5+8,可以得出:
甲用电:50+1=51度,乙用电:50-5=45度。
如果都超过50度,那么相差就应该是8的倍数,显然33不是8的倍数;
如果都没有超过50度,那么相差就应该是5的倍数,同样33也不是5的倍数。
因此,甲50度以上,乙50度以下。
33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。
所以甲50+1=51度,乙50-5=45度
因篇幅问题不能全部显示,请点此查看更多更全内容