您的当前位置:首页正文

高中数学球与各种几何体切、接问题专题(一))

2020-01-16 来源:钮旅网


球与各种几何体切、接问题

近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见。

首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.

一、球与柱体的切接

规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.

1、 球与正方体

(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;

数据关系:设正方体的棱长为a,球的半径为r,这时有2ra.

(2)正方体的棱切球,如图2. 位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a,球的半径为r,这时有2r2a.

2

.

(3)正方体的外接球,如图3. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;

数据关系:设正方体的棱长为a,球的半径为r,这时有2r3a.

图3

例 1 棱长为1的正方体ABCDA1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱

AA1,DD1的中点,则直线EF被球O截得的线段长为( )

A.2 2 B.1 C.12 2D.2 思路分析:由题意推出,球为正方体的外接球.平面AA1DD1截面所得圆面的半径

AD12R,得知直线EF被球O截得的线段就是球的截面圆的直径.

22

2、 球与长方体

例2 自半径为R的球面上一点M,引球的三条两两垂直的弦MA,MB,MC,求

MA2MB2MC2的值.

.

结论:长方体的外接球直径是长方体的对角线.

例 3(全国卷I高考题)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).

A. 16 B. 20 C. 24 D. 32

思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.

3、 球与正棱柱

(1)结论1:正棱柱的外接球的球心是上下底面中心的连线的中点. (2)结论2:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.

.

二、 球与锥体的切接

规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.

1、正四面体与球的切接问题

(1) 正四面体的内切球,如图4.位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;

数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有4Rh6a; 3

例4 正四面体的棱长为a,则其内切球的半径为______.

【解析】 如图正四面体A-BCD的中心为O,即内切球球心,内切球半径R即为O到正四面体各面的距离.∵AB=a, ∴正四面体的高h==6a. 12

61a,又VA-BCD=4VO-BCD,()∴R=h34

(2)正四面体的外接球,位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;

数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有4R3h6a;(可用

.

正四面体高h减去内切球的半径得到) 例5 求棱长为1的正四面体外接球的半径。

设SO1是正四面体S-ABC的高,外接球的球心O在SO1上,设外接球半径为R,AO1=r,

则在△ABC中,用解直角三角形知识得r=从而SO1=SA2-AO21=11-=3

2, 3

236-R)2+()2,解得R=. 3343

, 3

在Rt△AOO1中,由勾股定理得R2=(

结论:正四面体的高线与底面的交点是△ABC的中心且其高线通过球心,这是构造直角三角形解题的依据.此题关键是确定外接球的球心的位置,突破这一点3

此问题便迎刃而解,正四面体外接球的半径是正四面体高的,内切球的半径是正41

四面体高的.

4

(3) 正四面体的棱切球,位置关系:正四面体的六条棱与球面相切,正四面体的中心与球心重合;

数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有

4R3h2a,h例6

6a. 3 .

例7设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.

思路分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.

.

(4)为什么正四面体外接球和内切球心是同一个点?

2.其它棱锥与球的切接问题

(1)球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R.这

.

样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.

(2)球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.

结论1:正棱锥的外接球的球心在其高上,具体位置可通过计算找到.

结论2:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心. 长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法.

途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体.

途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.

途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体. 途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.

例8 正三棱锥的高为1,底面边长为26,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.

思路分析:此题求解的关键是搞清球的半径与正三棱锥的高及底面边长的关系,由等体积法可得:VPABCVOPABVOPACVOPBCVOABC,得到R2362.

233 .

例9(福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 .

思路分析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法.三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,由侧棱长均相等,所以可构造正方体模型.

.

点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中计算问题,这是解决几何体与球切接问题常用的方法.

例10【2012年新课标高考卷】已知三棱锥SABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC是球O的直径,且SC2;则此棱锥的体积为( ) A.

2322 B. C. D. 6632思路分析:ABC的外接圆是球面的一个小圆,由已知可得其半径,从而得到点O到面ABC的距离.由SC为球O的直径点S到面ABC的距离即可求得棱锥的体积.

练习:

.

3、由性质确定球心

利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.

4、内切球问题

若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。

.

3、正棱锥的内切球和外接球球心都在高线上,但不重合。 4、基本方法:构造三角形利用相似比和勾股定理。 5、体积分割是求内切球半径的通用做法。

三、 球与球相切问题

对于球与球的相切组合成复杂的几何体问题,要根据丰富的空间想象力,通过准确确定各个小球的球心的位置,或者巧借截面图等方法,将空间问题转化平面问题求解.

例11 已知有半径分别为2、3的球各两个,且这四个球彼此相外切,现有一个球与此四个球都相外切,则此球的半径为 .

思路分析:结合图形,分析四个球的球心A、B、C、D的位置,知AD=AC=BD=BC=5,AB=6,CD=4.设AB中点为E、CD中点为F,连结EF.在△ABF中可得BF21,在△EBF中可得EF23.

由于对称性可得第五个球的球心O在EF上,连结OA、OD.设第五个球的半径为r,根据OE+OF=EF建立r的方程.

.

例12把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.

思路分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.

四、球与几何体的各条棱相切问题

.

球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:r2a. 4例13 把一个皮球放入如图10所示的由8根长均为20 cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为( )

A.l03cm C.102cm

B.10 cm D.30cm

思路分析:根据题意球心O在图中AP上,过O作BP的垂线ON垂足为N,ON=R,OM=R,由各个棱都为20,得到AM=10,BP=20,BM=10,AB=102,设BPA,在RtBPM中,由BPBMPM,得PM103.在RtPAM中, 由PMAMAP,得

222222PA102.在RtABP中得, sinAB1022,在RtONP中得, BP202sinR2ONR,从而,OP2R.在RtOAM中, 由OM2AO2AM2,OP2OPOP建立方程R2(1022R)2100即可得解.

.

五、 球与旋转体切接问题

首先画出球及其它旋转体的公共轴截面,然后寻找几何体与几何体几何元素之间的关系. 例14 求球与它的外切圆柱、外切等边圆锥的体积之比.

思路分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.

.

例15 在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.

思路分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如图的截面图,在图中,观察R与r和棱长间的关系即可.

.

综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.高考题往往与三视图相结合,题目的难易不一,在复习中切忌好高骛远,应重视各种题型的备考演练,重视高考信息的搜集,不断充实题目的类型,升华解题的境界.

.

因篇幅问题不能全部显示,请点此查看更多更全内容