您的当前位置:首页正文

八年级数学工作总结

2022-07-12 来源:钮旅网

  实数的概念

  实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的'实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

  实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

  实数有什么范围

  在实数范围内,是指对于全体实数都成立,实数包括有理数和无理数,也可以分为正实数,0和负实数,不只是大于等于0,还包括负实数。

  整数和小数的集合也是实数,实数的定义是:有理数和无理数的集合。

  而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数。

  所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。

  实数的性质

  1.基本运算:

  实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。

  实数加、减、乘、除(除数不为零)、平方后结果还是实数。

  任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

  有理数范围内的运算律、运算法则在实数范围内仍适用:

  交换律:a+b=b+a,ab=ba

  结合律:(a+b)+c=a+(b+c)

  分配律:a(b+c)=ab+ac

  2.实数的相反数:

  实数的相反数的意义和有理数的相反数的意义相同。

  实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。

  实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

  3.实数的绝对值:

  实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;

  一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是:|a|

  ①a为正数时,|a|=a(不变)

  ②a为0时,|a|=0

  ③a为负数时,|a|=a(为a的相反数)

  (任何数的绝对值都大于或等于0,因为距离没有负的。)

  4实数的倒数:

  实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a(a≠0)

  初中数学分式的运算知识点

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

  一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为“△”。

因篇幅问题不能全部显示,请点此查看更多更全内容