您的当前位置:首页正文

【OpenGL】Shader技巧集合

2020-11-09 来源:钮旅网

这篇文章将收集unity中使用shader的相关技巧和特效,会不断地更新内容。关于在Unity中使用shader的介绍,请参考《【OpenGL】使用Unity来学习OpenGL》 常用的内置uniform iResolution =》_ScreenParams iGlobalTime = _Time.y glFragCoord = f loat4 sp:WPOS

这篇文章将收集unity中使用shader的相关技巧和特效,会不断地更新内容。关于在Unity中使用shader的介绍,请参考《【OpenGL】使用Unity来学习OpenGL》

常用的内置uniform

iResolution =》_ScreenParams

iGlobalTime => _Time.y

glFragCoord => float4 sp:WPOS // 需要 #pragma target 3.0, 另外的方式请见下面

vec2 => float2

mix => lerp

mod => fmod

texture2D => tex2D

textureCube => texCUBE

mat2=>float2x2

fract=>frac

========

关于glFragCoord, 可以使用另外一种方式计算(支持3.0之前的)参考官方例子

o.scrPos = ComputeScreenPos(o.pos);

float2 wcoord = (i.scrPos.xy/i.scrPos.w);

-------

float2 wcoord = sp.xy/_ScreenParams.xy;


关于数学的Shader:https://www.shadertoy.com/view/ldlSD2 https://www.shadertoy.com/view/ldlSWj


很好的一个教程:http://ogldev.atspace.co.uk/index.html


Deferred Shading 原理: http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html


关于Stencil Buffer 的理解:http://www.cnblogs.com/mikewolf2002/archive/2012/05/15/2500867.html

更多文章:1)http://docs.unity3d.com/Manual/SL-Stencil.html

2) http://answers.unity3d.com/questions/590800/how-to-cullrender-to-through-a-window.html


Stencil Shadow Volume : http://ogldev.atspace.co.uk/www/tutorial40/tutorial40.html

http://en.wikipedia.org/wiki/Shadow_volume


镜面反射的实现原理:

ftp://ftp.sgi.com/sgi/opengl/contrib/blythe/advanced99/notes/node158.html

其它镜面反射:

http://en.wikibooks.org/wiki/Cg_Programming/Unity/Mirrors


在unity cg中可以使用[HideInInspector]来隐藏uniform属性,这样就可以用作自定义常量。

Physically Based Rendering: Tutorial: Physically Based Rendering, And you can too!

边缘检测:1) http://www.codeproject.com/Articles/94817/Pixel-Shader-for-Edge-Detection-and-Cartoon-Effect

2) http://coding-experiments.blogspot.hk/2010/06/edge-detection.html

3) http://en.wikipedia.org/wiki/Edge_detection

Cg函数表:http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.html

heat effect : http://forum.unity3d.com/threads/50132-Heat-Distortion, http://www.cnblogs.com/geoffyange/archive/2013/06/06/3122570.html

skin shading in unity: http://www.altdevblogaday.com/2011/12/31/skin-shading-in-unity3d/

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch14.html

http://gamedev.stackexchange.com/questions/31308/algorithm-for-creating-spheres

RenderMan University: http://renderman.pixar.com/view/renderman-university

一些shader的例子:











Shader "stalendp/shaderTest02" { //see https://www.shadertoy.com/view/4sj3zy
	Properties {
	_MainTex ("Base (RGB)", 2D) = "white" {}
	}
	SubShader {
	Pass {
	CGPROGRAM
	#pragma vertex vert
	#pragma fragment frag
	#pragma target 3.0
	
	#include "UnityCG.cginc"

	sampler2D _MainTex;
	
	//Variable declarations
	
	struct myvars {
	float3 bgColor;
	float sphereScale;
	float sphereShine;
	float3 sphereDiff;
	float3 sphereSpec;
	float2 specPoint;
	};

	float4 vert(appdata_base v) : POSITION {
	return mul(UNITY_MATRIX_MVP, v.vertex);
	}
	
	float4 frag(float4 sp:WPOS): COLOR {
	myvars mv;
	mv.bgColor = float3(0.6, 0.5, 0.6);
	mv.sphereScale = 0.7;
	mv.sphereShine = 0.5;
	mv.sphereDiff = float3(0.5, 0.0, 0.5);
	mv.sphereSpec = float3(1.0, 1.0, 1.0);
	mv.specPoint = float2(0.2, -0.1);
	
	// creates shader pixel coordinates
	float2 uv = sp.xy/_ScreenParams.xy;
	// sets the position of the camera
	float2 p = uv * 2.5 - float2(1.0, 1.0);
	p.x *= _ScreenParams.x / _ScreenParams.y;
	
	// Rotates the sphere in a circle
	p.x += cos(-_Time.y) *0.35;
	p.y += sin(-_Time.y) * 0.35;
	
	// Rotates the specular point with the sphere
	mv.specPoint.x += cos(-_Time.y) * 0.35;
	mv.specPoint.y += sin(-_Time.y) * 0.35;
	
	//Sets the radius of the sphere to the middle of the screen
	float radius = length(p);//sqrt(dot(p, p));
	
	float3 col = mv.bgColor;
	
	//Sets the initial dark shadow around the edge of the sphere
	float f = smoothstep(mv.sphereScale * 0.7, mv.sphereScale, length(p + mv.specPoint));
	col -= lerp(col, float3(0.0,0.0,0.0), f) * 0.2;
	
	//Only carries out the logic if the radius of the sphere is less than the scale
	if(radius < mv.sphereScale) {
	float3 bg = col;
	
	//Sets the diffuse colour of the sphere (solid colour)
	col = mv.sphereDiff;
	
	//Adds smooth dark borders to help achieve 3D look
	f = smoothstep(mv.sphereScale * 0.7, mv.sphereScale, radius);
	col = lerp(col, mv.sphereDiff * 0.45, f);
	
	//Adds specular glow to help achive 3D look
	f = 1.0 - smoothstep(-0.2, 0.6, length(p - mv.specPoint));
	col += f * mv.sphereShine * mv.sphereSpec;
	
	//Smoothes the edge of the sphere
	f = smoothstep(mv.sphereScale - 0.01, mv.sphereScale, radius);
	col = lerp(col, bg, f);
	}
	
	
	//The final output of the shader logic above
	//gl_FragColor is a vector with 4 paramaters(red, green, blue, alpha)
	//Only 2 need to be used here, as "col" is a vector that already carries r, g, and b values
	return float4(col, 1);
	}
	
	ENDCG
	}
	} 
	FallBack "Diffuse"
}


Shader "Custom/shaderTest03" { // https://www.shadertoy.com/view/Xdf3DS
	Properties {
	_MainTex ("Base (RGB)", 2D) = "white" {}
	}
	SubShader {
	
	Pass {
	CGPROGRAM
	#pragma vertex vert
	#pragma fragment frag
	#pragma target 3.0
	
	#include "UnityCG.cginc"

	sampler2D _MainTex;

	
	struct myvars {
	float k;
	float f;
	float threshold;

	float3 colour;
	float3 normal;

	float3 lightPos;
	float3 lightColour;
	float3 ambient;
	float shinyness;
	float diffuseFactor;
	float4 fragCoord;
	};
	

	float2 center ( float2 border , float2 _offset , float2 vel, myvars mv) {
	float2 c = _offset + vel * _Time * 0.5;
	c = fmod ( c , 2. - 4. * border );
	if ( c.x > 1. - border.x ) c.x = 2. - c.x - 2. * border.x;
	if ( c.x < border.x ) c.x = 2. * border.x - c.x;
	if ( c.y > 1. - border.y ) c.y = 2. - c.y - 2. * border.y;
	if ( c.y < border.y ) c.y = 2. * border.y - c.y;
	return c;
	}
	
	float field ( float b, float r , myvars mv) {
	if ( r > b )
	return 0.0;
	if ( r >= b/3.0 ) {
	float rb = 1.0 - r/b;
	return (3.0*mv.k)/2.0 * rb * rb;
	}
	if ( r >= 0.0 && r <= b/3.0 ) {
	return mv.k * ( 1.0 - ( (3.0*r*r)/(b*b) ) );	
	}
	return 0.0;
	}
	
	void circle ( float r , float2 col , float2 _offset , float2 vel, myvars mv ) {
	float2 pos = mv.fragCoord.xy / _ScreenParams.y;
	float aspect = _ScreenParams.x / _ScreenParams.y;
	float2 c = center ( float2 ( r / aspect , r ) , _offset , vel, mv);
	c.x *= aspect;
	float d = distance ( pos , c );
	float thisField = field (r, d, mv);
	mv.f += thisField;
	mv.colour += float3(col, 0) * thisField;
	mv.normal += normalize(float3(pos.x-c.x, pos.y-c.y,r))*thisField;
	}
	

	float4 vert(appdata_base v) : POSITION {
	return mul(UNITY_MATRIX_MVP, v.vertex);
	}
	
	float4 frag(float4 sp:WPOS): COLOR {
	myvars mv;
	mv.fragCoord = sp;
	mv.k = 100.0;
	mv.f = 0.0;
	mv.threshold = 10.0;

	mv.colour = float3(0.0,0.0,0.0);
	mv.normal = float3(0.0,0.0,0.0);

	mv.lightPos = float3(_ScreenParams.xy,2000.0);
	mv.lightColour = float3(0.9,0.9,1.0);
	mv.ambient = float3(0.1,0.0,0.0);
	mv.shinyness = 20.0;
	mv.diffuseFactor = 0.0006;
	
	circle ( .10 , float3 ( 0.7 , 0.2 , 0.8 ) , float2 ( .6 ) , float2 ( .30 , .70 ), mv );
	circle ( .09 , float3 ( 0.7 , 0.9 , 0.6 ) , float2 ( .1 ) , float2 ( .02 , .20 ), mv );
	circle ( .12 , float3 ( 0.3 , 0.4 , 0.1 ) , float2 ( .1 ) , float2 ( .10 , .04 ), mv );
	circle ( .15 , float3 ( 0.2 , 0.5 , 0.1 ) , float2 ( .3 ) , float2 ( .10 , .20 ), mv );
	circle ( .20 , float3 ( 0.1 , 0.3 , 0.7 ) , float2 ( .2 ) , float2 ( .40 , .25 ), mv );
	circle ( .30 , float3 ( 0.9 , 0.4 , 0.2 ) , float2 ( .0 ) , float2 ( .15 , .20 ), mv );
	
	float3 c;
	
	if (mv.f < mv.threshold)
	c = float3(0.0,0.0,0.0);
	else {
	mv.colour /= mv.f;
	mv.normal = mv.normal/mv.f;
	
	c = mv.ambient;
	float3 lightDir = mv.lightPos - float3(sp.xy,0.0);
	c += mv.colour * mv.diffuseFactor * max(dot(mv.normal,lightDir), 0.0);
	float3 r = normalize ( reflect ( lightDir, mv.normal ) );
	c += mv.lightColour * pow(max(dot(r,float3(0.0,0.0,-1.0)), 0.0), mv.shinyness);	
	}
	return float4(c, 1);
	}
	
	ENDCG
	}
	} 
}

Shader "stalendp/shaderTest04" { //see https://www.shadertoy.com/view/Xsf3R8
	Properties {
	_MainTex ("Base (RGB)", 2D) = "white" {}
	}
	SubShader {
	Pass {
	CGPROGRAM
	#pragma vertex vert
	#pragma fragment frag
	#pragma target 3.0
	
	#include "UnityCG.cginc"

	sampler2D _MainTex;
	
	struct Ray {
	float3 org;
	float3 dir;
	};
	
	float rayPlaneIntersect( Ray ray, float4 plane ) {
	float f = dot( ray.dir, plane.xyz );
	
	float t = -( dot( ray.org, plane.xyz ) + plane.w );
	t /= f;
	
	return t;
	}
	
	float3 shade( float3 pos, float3 nrm, float4 light ) {
	float3 toLight = light.xyz - pos;
	float toLightLen = length( toLight );
	toLight = normalize( toLight );
	
	float diff = dot( nrm, toLight );
	float attn = 1.0 - pow( min( 1.0, toLightLen / light.w ), 2.0 );
	float comb = 2.0 * diff * attn;
	
	return float3( comb, comb, comb );
	}


	float4 vert(appdata_base v) : POSITION {
	return mul(UNITY_MATRIX_MVP, v.vertex);
	}
	
	float4 frag(float4 sp:WPOS): COLOR {
	
	// gl_FragCoord: location (0.5, 0.5) is returned 
	// for the lower-left-most pixel in a window
	
	// XY of the normalized device coordinate
	// ranged from [-1, 1]
	float2 ndcXY = -1.0 + 2.0 * sp.xy / _ScreenParams.xy;
	
	// aspect ratio
	float aspectRatio = _ScreenParams.x / _ScreenParams.y;
	
	// scaled XY which fits the aspect ratio
	float2 scaledXY = ndcXY * float2( aspectRatio, 1.0 );
	
	// camera XYZ in world space
	float3 camWsXYZ = float3( 0.0, 1.0, 0.0 );
	camWsXYZ.z += 10.0 * cos( _Time.y );
	
	// construct the ray in world space
	Ray ray;
	ray.org = camWsXYZ;
	ray.dir = float3( scaledXY, -2.0 ); // OpenGL is right handed
	
	// define the plane in world space
	float4 plane = float4( 0.0, 1.0, 0.0, 0.0 );
	
	float t = rayPlaneIntersect( ray, plane );
	
	// define the point light in world space (XYZ, range)
	float4 lightWs = float4( 0.0, 5.0, -5.0, 10.0 );
	
	if ( t >= 0.0 )
	{
	float3 sceneWsPos = ray.org + t * ray.dir;
	float3 sceneWsNrm = plane.xyz;
	float2 sceneUV = sceneWsPos.xz / 4.0;
	
	float4 sceneBase = tex2D( _MainTex, sceneUV );	
	float3 sceneShade = shade( sceneWsPos, sceneWsNrm, lightWs );
	
	return float4( sceneShade * sceneBase.xyz, 1.0 );
	}
	
	return float4( 0.0, 0.0, 0.0, 1.0 );
	}
	
	ENDCG
	}
	} 
	FallBack "Diffuse"
}


Shader "stalendp/shaderTest04" { //see https://www.shadertoy.com/view/MdB3Dw
	Properties {
	_MainTex ("Base (RGB)", 2D) = "white" {}
	}
	SubShader {
	Pass {
	CGPROGRAM
	#pragma vertex vert
	#pragma fragment frag
	#pragma target 3.0
	
	#include "UnityCG.cginc"
	
	#define USE_ANALYTICAL_MBLUR

	sampler2D _MainTex;
	
	// intersect a MOVING sphere
	float2 iSphere( in float3 ro, in float3 rd, in float4 sp, in float3 ve, out float3 nor )
	{
	 float t = -1.0;
	float s = 0.0;
	nor = float3(0.0);
	
	float3 rc = ro - sp.xyz;
	float A = dot(rc,rd);
	float B = dot(rc,rc) - sp.w*sp.w;
	float C = dot(ve,ve);
	float D = dot(rc,ve);
	float E = dot(rd,ve);
	float aab = A*A - B;
	float eec = E*E - C;
	float aed = A*E - D;
	float k = aed*aed - eec*aab;
	
	if( k>0.0 )
	{
	k = sqrt(k);
	float hb = (aed - k)/eec;
	float ha = (aed + k)/eec;
	
	float ta = max( 0.0, ha );
	float tb = min( 1.0, hb );
	
	if( ta < tb )
	{
	 ta = 0.5*(ta+tb);	
	 t = -(A-E*ta) - sqrt( (A-E*ta)*(A-E*ta) - (B+C*ta*ta-2.0*D*ta) );
	 nor = normalize( (ro+rd*t) - (sp.xyz+ta*ve ) );
	 s = 2.0*(tb - ta);
	}
	}

	return float2(t,s);
	}

	// intersect a STATIC sphere
	float iSphere( in float3 ro, in float3 rd, in float4 sp, out float3 nor )
	{
	 float t = -1.0;
	nor = float3(0.0);
	
	float3 rc = ro - sp.xyz;
	float b = dot(rc,rd);
	float c = dot(rc,rc) - sp.w*sp.w;
	float k = b*b - c;
	if( k>0.0 )
	{
	t = -b - sqrt(k);
	nor = normalize( (ro+rd*t) - sp.xyz );
	}

	return t;
	}

	float3 getPosition( float time ) { return float3( 2.5*sin(8.0*time), 0.0, 1.0*cos(8.0*time) ); }
	float3 getVelocity( float time ) { return float3( 8.0*2.5*cos(8.0*time), 0.0, -8.0*1.0*sin(8.0*time) ); }


	float4 vert(appdata_base v) : POSITION {
	return mul(UNITY_MATRIX_MVP, v.vertex);
	}
	
	float4 frag(float4 sp:WPOS): COLOR {
	float2 q = sp.xy / _ScreenParams.xy;
	float2 p = -1.0 + 2.0*q;
	p.x *= _ScreenParams.x/_ScreenParams.y;	

	// camera
	float3 ro = float3(0.0,0.0,4.0);
	 float3 rd = normalize( float3(p.xy,-2.0) );
	
	 // sphere	
	
	// render
	float3 col = float3(0.0);
	
	#ifdef USE_ANALYTICAL_MBLUR
	
	 //---------------------------------------------------	
	 // render with analytical motion blur
	 //---------------------------------------------------	
	float3 ce = getPosition( _Time.y );
	float3 ve = getVelocity( _Time.y );
	 	
	col = float3(0.25) + 0.3*rd.y;
	float3 nor = float3(0.0);
	float3 tot = float3(0.25) + 0.3*rd.y;
	 float2 res = iSphere( ro, rd, float4(ce,1.0), ve/24.0, nor );
	float t = res.x;
	if( t>0.0 )
	{
	float dif = clamp( dot(nor,float3(0.5703)), 0.0, 1.0 );
	float amb = 0.5 + 0.5*nor.y;
	float3 lcol = dif*float3(1.0,0.9,0.3) + amb*float3(0.1,0.2,0.3);
	col = lerp( tot, lcol, res.y );
	}
	
	#else
	
	 //---------------------------------------------------	
	 // render with brute force sampled motion blur
	 //---------------------------------------------------	
	
	 #define NUMSAMPLES 32
	float3 tot = float3(0.0);
	for( int i=0; i0.0 )
	 {
	 float dif = clamp( dot(nor,float3(0.5703)), 0.0, 1.0 );
	 float amb = 0.5 + 0.5*nor.y;
	 tmp = dif*float3(1.0,0.9,0.3) + amb*float3(0.1,0.2,0.3);
	 }
	 col += tmp;
	}	
	col /= float(NUMSAMPLES);
	
	 #endif
	
	col = pow( clamp(col,0.0,1.0), float3(0.45) );

	return float4( col, 1.0 );
	}
	
	ENDCG
	}
	} 
	FallBack "Diffuse"
}

Shader "stalendp/shaderTest05" { //see https://www.shadertoy.com/view/XsB3DW
	Properties {
	_MainTex ("Base (RGB)", 2D) = "white" {}
	_CubeDiffuse ("Cubemap Diffuse Map", CUBE) = "" {}
	vv1("vv1", float) = -1.0
	vv2("vv2", float) = 2.0
	}
	SubShader {
	Pass {
	CGPROGRAM
	#pragma vertex vert
	#pragma fragment frag
	#pragma target 3.0
	//下面防止编译错误:instruction limit of 1024 exceed;
	#pragma glsl 
	
	#include "UnityCG.cginc" 
	
	#define MAX_STEPS 64
	#define MAX_REFLECTIONS 4
	#define PI 3.1415926536

	sampler2D _MainTex;
	samplerCUBE _CubeDiffuse;
	float vv1, vv2;
	
	struct Ray {
	float3 o;
	float3 d;
	};
	struct Sphere {
	float3 o;
	float r;
	};
	struct Box {
	float3 o;
	float3 s;
	};
	struct Torus {
	float3 o;
	float2 s;
	};
	
	float2 rotate2d(in float2 v, in float a) {
	float sinA = sin(a);
	float cosA = cos(a);
	return float2(v.x * cosA - v.y * sinA, v.y * cosA + v.x * sinA);	
	}

	float sdSphere(in float3 p, in Sphere s) {
	return length(p-s.o)-s.r;
	}
	float sdBox(in float3 p, in Box b) {
	float3 d = abs(p-b.o) - b.s;
	return min(max(d.x,max(d.y,d.z)),0.0) +
	length(max(d,0.0));
	}
	float sdTorus(in float3 p, in Torus t) {
	p -= t.o;
	float2 q = float2(length(p.xz)-t.s.x,p.y);
	return length(q)-t.s.y;
	}
	float world(in float3 p) {
	float ti = fmod(_Time.y,10.);
	if(ti > 2.) {
	Sphere s0 = Sphere(float3(0),1.);
	Box b0 = Box(float3(0),float3(.8));
	if(ti < 4.) {
	return max(-sdSphere(p,s0),sdBox(p,b0));
	} else if(ti < 6.) {
	return min(sdSphere(p,s0),sdBox(p,b0));
	} else if(ti < 8.) {
	return max(sdSphere(p,s0),sdBox(p,b0));
	} else {
	return max(sdSphere(p,s0),-sdBox(p,b0));
	}
	} else {
	float3 pr = p.xzy;
	return sdTorus(pr, Torus(float3(0),float2(1.,.5)));
	}
	}
	
	float3 getNormal(in float3 p) {
	float3 d = float3(.005,0,0);
	float3 n;
	n.x = world(p+d.xyy);
	n.y = world(p+d.yxy);
	n.z = world(p+d.yyx);
	return normalize(n);
	}

	bool march(in Ray r, out float3 p) {
	p = r.o;
	float d;
	for(int i = 0; i < MAX_STEPS; i++) {
	d = world(p);
	p += r.d*d;
	}
	return d<=0.01;
	}

	float3 colorMarch(in Ray r) {
	float3 p;
	float3 col = float3(0);
	for(int i = 0; i < MAX_REFLECTIONS; i++) {
	if(march(r,p)) {
	float3 ldir = normalize(float3(1,-1,.5));
	float3 n = getNormal(p);
	col += float3(dot(n,-ldir))*.25;
	r = Ray(p,reflect(r.d,n));
	r.o += r.d*0.2;
	} else {
	break;
	}
	}
	col += texCUBE(_CubeDiffuse, r.d).rgb;
	return col;
	}

	float4 vert(appdata_base v) : POSITION {
	return mul(UNITY_MATRIX_MVP, v.vertex);
	}
	
	float4 frag(float4 sp:WPOS): COLOR {
	float2 uv = 2.*sp.xy/_ScreenParams.xy-1.;
	uv.x *= _ScreenParams.x/_ScreenParams.y;
	
	Ray r = Ray(float3(0,0,-2),normalize(float3(uv,1)));
	r.o.xz = rotate2d(r.o.xz,_Time.y*.5);
	r.d.xz = rotate2d(r.d.xz,_Time.y*.5);
	float3 cc =colorMarch(r);

	return float4( cc, 1.0 );
	}
	
	ENDCG
	}
	} 
	FallBack "Diffuse"
}


CGINCLUDE的使用

 




        
显示全文