比值是偏态数据,比值往往是呈偏态分布的。偏态分布是与正态分布相对,分布曲线左右不对称的数据次数分布,是连续随机变量概率分布的一种。可以通过峰度和偏度的计算,衡量偏态的程度。可分为正偏态和负偏态,前者曲线右侧偏长,左侧偏短;后者曲线左侧偏长,右侧偏短。
正偏态分布的特征是曲线的最高点偏向X轴的左边,位于左半部分的曲线比正态分布的曲线更陡,而右半部分的曲线比较平缓,并且其尾线比起左半部分的曲线更长,无限延伸直到接近X轴。
小编还为您整理了以下内容,可能对您也有帮助:
偏态系数取决于
偏态系数取决于离差三次方的平均数与标准差三次方的比值。
偏态系数的取值范围:可为任一实数。
偏态系数以平均值与中位数之差对标准差之比率来衡量偏斜的程度,用SK表示偏斜系数:偏态系数小于0,因为平均数在众数之左,是一种左偏的分布,又称为负偏。偏态系数大于0,因为均值在众数之右,是一种右偏的分布,又称为正偏。
偏态系数是根据众数、中位数与均值各自的性质,通过比较众数或中位数与均值来衡量偏斜度的,即偏态系数是对分布偏斜方向和程度的刻画。
三种情况:
零值:偏态系数的取值为0时,表示数据为完全的对称分布。
正值:偏态系数的取值为正数时,表示数据为正偏态或右偏态。
负值:偏态系数的取值为负数时,表示数据为负偏态,或左偏态。
注意事项:偏态系数的绝对数值越小,表示数据偏倚的程度越小;偏态系数的绝对数值越大,表示数据偏倚的程度越大。
偏态系数又称偏差系数,说明随机系列分配不对称程度的统计参数,用Cs表示。和Cv只能反映频率密度分配曲线的平均情况和离散程度,而不能反映其对称(即偏态)情况,所以必须再引入一个参数,即偏差系数Cso。偏态系数绝对值越大,偏斜越严重。
如何理解数据的偏态分布?
偏态(或者偏度)就是次数分布的非对称程度,是测定一个次数分布的非对称程度的统计指标。相对于对称分布,偏态分布有两种:一种是左向偏态分布,简称左偏;另一种是右向偏态分布,简称右偏。
当实际分布为右偏时,测定出的偏度值为正值,因而右偏又称为正偏。当实际分布为左偏时,测定出的偏度值为负值,所以左偏被称为负偏。
如平均数大于众数,称为正偏态(positiveskewness);相反,则称为负偏态(negativeskewness)。
在spss的Descriptives描述中有峰度系数和偏度系数, Sk=0,Ku=0时,分布呈正态,Sk>0时,分布呈正偏态,Sk<0时,分布呈负偏态,Ku>3时曲线比较陡峭,Ku<3时曲线比较平坦,Ku=3时正态曲线,当Ku在1.8以下时曲线呈U型分布。由此可判断本数据分布是否为正态分布。
数据分布的测度
在描述性统计中,一组数据的特征除了使用集中趋势和离中趋势来描述外,还使用其分布的形状来分析。数据分布形态的测度主要是以正态分布为标准进行衡量,正态分布在数轴上的形态如一个倒钟形,曲线以均数为中心,左右对称,曲线两端永远不与横轴相交,曲线的高峰位于正,即均数所在的位置。
一组数据的分布形状是通过直方图将该数据分布在数轴上拟合出一条曲线,将曲线的尖峭(qiào)程度和对称性与正态分布曲线相比较,其测试指标包括偏态和峰度。
数据分布的不对称性称作偏态。偏态是指数据分布的偏斜方向和程度。偏度,通常分为右偏(或正偏)与左偏(或负偏)两种。
测定偏态的指标是偏态系数。偏态系数以平均值与中位数之差对标准差之比率来衡量偏斜的程度,用SK表示偏斜系数:偏态系数小于0,因为平均数在众数之左,是一种左偏的分布,又称为负偏。偏态系数大于0,因为均值在众数之右,是一种右偏的分布,又称为正偏。计算公式为:
偏态系数的取值为0时,表示数据为完全的对称分布;偏态系数的取值为正数时,表示数据为正偏态或右偏态;偏态系数的取值为负数时,表示数据为负偏态,或左偏态。
注:偏态系数的绝对数值越小,表示数据偏倚的程度越小;偏态系数的绝对数值越大,表示数据偏倚的程度越大。
在实际的数据分析过程中,偏度和峰度的作用主要表现在以下两个方面。一是将偏度和峰度结合起来检查样本的分布是否属于正态分布,以便判断总体的分布。如果样本偏度接近于0而峰度接近于3,就可以判断总体分布是接近于正态分布的,用样本来对总体进行测定时就可以看成是正态分布,否则就可以进行否认。二是利用资料之间存在的偏度关系,对算术平均数、众数、中位数进行推算。一般情况下,只要分布不是正态的,算术平均数。众数、中位数之间都存在以下关系。
右偏时:
左偏时:
在偏度适度时,不论右偏还是左偏,三者间的距离有近似的固定关系,即中位数与算术平均数的距离,约等于众数与算术平均数距离的1/3。可得以下关系式:
偏度与其标准差的比值多少可以认为是正态分布?
偏度与其标准差的比值,可以认为是正态的分布比率,应该在1比1左右
衡量数据分布的偏态程度
偏态程度是指数据分布的偏斜程度,可以用偏度(skewness)来度量。偏度的值为0时,表示数据分布是对称的;大于0时,表示数据分布右偏,即数据集中在左侧,长尾在右侧;小于0时,表示数据分布左偏,即数据集中在右侧,长尾在左侧。
通常认为,当偏度的绝对值大于1时,数据分布就是明显的偏态分布。当偏度的绝对值在0.5到1之间时,数据分布是中等程度的偏态分布;当偏度的绝对值小于0.5时,数据分布是近似对称的分布。
需要注意的是,偏度只能用来描述数据分布的偏斜程度,不能说明数据的具体分布形态。例如,一些正态分布的样本也可能具有一定的偏度,因此在使用偏度来描述数据分布时,需要综合考虑其他指标来确定数据分布的形态。
具体计算偏度的公式如下:
其中,Xi表示第 i个数据点,x(上划线) 表示所有数据点的平均值,n表示数据点的个数。
如果偏度的值大于0,表示数据分布右偏;小于0,表示数据分布左偏;等于0,表示数据分布对称。通常认为,当偏度的绝对值大于1时,数据分布就是明显的偏态分布。
偏态系数是什么?怎么求? 还有峰态系数求法,步骤要详细的
峰态:又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了尾部的厚度。
峰度以bk表示,Yi是样本测定值,Ybar是样本n次测定值的平均值,s为样本标准差。正态分布的峰度为3。bk3称分布具有过度的峰度。若知道分布有可能在峰度上偏离正态分布时,可用峰度来检验分布的正态性。次数分配较常态分配曲线平坦者,为低阔峰分配g20.g2=0时为常态分配.
随机变量的峰度计算方法为:随机变量的四阶中心矩与方差平方的比值。
偏态(Skewness),是指非对称分布的偏斜状态。换句话说,就是指统计总体当中的变量值分别落在众数(M0)的左右两边,呈非对称性分布。
在统计学上,众数和平均数之差可作为分配偏态(skewnessdistribution)的指标之一。如平均数大于众数,称为正偏态(positiveskewness);相反,则称为负偏态(negativeskewness)。即:
如果X'>M0,这种偏态称为正偏态或右偏态,正偏态g1>0;
如果X'
怎样理解统计学中“偏度”或“偏态系数”这一指标?
偏度这一指标,又称偏斜系数、偏态系数,是用来帮助判断数据序列的分布规律性的指标。在数据序列呈对称分布(正态分布)的状态下,其均值、中位数和众数重合。且在这三个数的两侧,其它所有的数据完全以对称的方式左右分布。如果数据序列的分布不对称,则均值、中位数和众数必定分处不同的位置。这时,若以均值为参照点,则要么位于均值左侧的数据较多,称之为右偏;要么位于均值右侧的数据较多,称之为左偏;除此无它。考虑到所有数据与均值之间的离差之和应为零这一约束,则当均值左侧数据较多的时候,均值的右侧必定存在数值较大的“离群”数据;同理,当均值右侧数据较多的时候,均值的左侧必定存在数值较小的“离群”数据。一般将偏度定义为三阶中心矩与标准差的三次幂之比。在上述定义下,偏度系数的取值无非三种情景:1.当数据序列呈正态分布的时候,由于均值两侧的数据完全对称分布,其三阶中心矩必定为零,于是满足正态分布的数据序列的偏度系数必定等于零。2.当数据序列非对称分布的时候,如果均值的左侧数据较多,则其右侧的“离群”数据对三阶中心矩的计算结果影响至巨,乃至于三阶中心矩取正值。因此,当数据的分布呈右偏的时候,其偏度系数将大于零。3.当数据序列非对称分布的时候,如果均值的右侧数据较多,则其左侧的“离群”数据对三阶中心矩的计算结果影响至巨,乃至于三阶中心矩取负值。因此,当数据的分布呈左偏的时候,偏度系数将小于零。在右偏的分布中,由于大部分数据都在均值的左侧,且均值的右侧存在“离群”数据,这就使得分布曲线的右侧出现一个长长的拖尾;而在左偏的分布中,由于大部分数据都在均值的右侧,且均值的左侧存在“离群”数据,从而造成分布曲线的左侧出现一个长长的拖尾。可见,在偏度系数的绝对值较大的时候,最有可能的含义是“离群”数据离群的程度很高(很大或很小),亦即分布曲线某侧的拖尾很长。但“拖尾很长”与“分布曲线很偏斜”不完全等价。例如,也不能排除在数据较少的那一侧,只是多数数据的离差相对于另一侧较大,但不存在明显“离群”数据的情景。所以,为准确判断分布函数的偏斜程度,最好的办法是直接观察分布曲线的几何图形。
一组数据的标准差与其均值的比值称为( )。
【答案】:B
离散系数也称为变异系数或标准差系数,即标准差与均值的比值。
关于偏态系数的说法,正确的是( )。
【答案】:C
1、偏态系数取决于离差三次方的平均数与标准差三次方的比值。 2、如果偏态系数等于0,说明数据的分布是对称的;故,C选项正确。
3、如果偏态系数为正值,说明分布为右偏的:
取值在0和0.5之间说明轻度右偏,
取值在0.5和1之间说明中度右偏,
取值大于1说明严重右偏。
4、如果偏态系数为负值,说明分布为左偏:
取值在0和-0.5之间说明轻度左偏,
取值在-0.5和-1之间说明中度左偏,
取值小于-1说明严重左偏。
5、偏态系数的绝对值越大,说明数据分布的偏斜程度越大。
下列关于偏态系数的表述错误的有( )。
【答案】:C
偏态系数取决于离差三次方的平均数与标准差三次方的比值;偏态系数绝对值越大,说明数据分布的偏斜程度越大。故C错误。