发布网友 发布时间:2022-04-23 15:20
共2个回答
热心网友 时间:2023-10-06 05:41
平均数问题公式 (一个数+另一个数)÷2
反向行程问题公式 路程÷(大速+小速
同向行程问题公式 路程÷(大速-小速)
行船问题公式 同上
列车过桥问题公式 (车长+桥长)÷车速
工程问题公式 1÷速度和
盈亏问题公式 (盈+亏)÷两次的相差数
利率问题公式 总利润÷成本×100%
中小学数学应用题常用公式
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
热心网友 时间:2023-10-06 05:41
【初一上册】
有理数——比较:a=0,|a|=0
a>0,|a|=a
a<0,|a|=-a
|a|>|b|,a<0,b<0,则a<b
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
减法法则:a-b=a+(-b)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
除法法则:a÷b=a(1÷b)【b≠0】
角与线——对顶角相等
同一平面内,有且只有一条直线与已知直线垂直。
同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
垂直于同一直线的两条直线互相平行。
同位角相等/内错角相等/同旁内角互补:两直线平行
两直线平行:同位角相等/内错角相等/同旁内角互补。
直角=90°,180°<优角<360°,平角=180°,周角=360°
90°<钝角<180°,0°<锐角<90°
【初一下册】
方程及不等式——解方程的两种基本方法:1.代入消元法
2.加减消元法
如果a>b,则a+c>b+c,a-c>b-c
如果a>b,c>0,则ac>bc
如果a>b,c<0,则ac<bc
三角形及正多边形——外角+相邻内角=180°
1.三角形的一个外角等于与它不相邻的两个内角的和。
2.三角形的一个外角大于任何一个与它不相邻的内角。
3.三角形具有稳定性。
4.三角形任意两边之和大于第三边,两边之差小于第三边。
【n=多边形的边数】(n>0)
多边形的外角和:180°
多边形的内角和:180°*(n-2)
多边形的边数:n边
多边形对角线的条数:n(n-3)÷2
正多边形的各个内角:180°-360°÷n