发布网友 发布时间:2022-04-23 06:46
共3个回答
热心网友 时间:2023-10-06 04:03
负数的初步认识 第1课时 【教学内容】 教科书第117~118页例1、例2,课堂活动第1、2题,练习二十五第1、3、4、5题。【教学目标】 1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。 2.会正确地读、写正、负数,知道0既不是正数,也不是负数。 3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。【教学重点】 负数的意义和负数的读法与写法。【教学难点】 理解0既不是正数,也不是负数。【教学过程】一、复习导入 提出问题:举例说明我们学过了哪些数? 活动:先思考并举例,然后小组交流,互相补充,最后抽学生反馈:整数,自然数,分数,小数,奇数,偶数…… 教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。 [点评:对学过的各种数是熟悉的,教师提出问题后积极地回忆、回答,这时教师注意理清思路,点出学过的主要几类数。] 提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢? 活动:同学们思考,头脑中产生疑问。 [点评:教师利用问题“有没有比0小的数?”制造悬念,并且这时 有一种急需知道结果的需求。]二、创设情境、学习新知 1.教学例1。 (1)课件出示:*电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……” 同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗? [点评:借助生活中习习相关的天气预报,唤起学生已有认知,利于新知的学习。] 为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢? 这里有零下6℃、零上6℃,都记作6℃行吗? 你有什么简洁的方法来表示他们的不同呢? 学生讨论思考后反馈,教师适时点拨、评价和引导。 教师小结:同学们都成了发明家。有的同学说用不同颜色来区分,比如:红色5℃表示零下5℃,黑色5℃表示零上5℃;也有的同学说,在数字前面加不同符号来区分,比如:△5℃表示零上5℃,×5℃表示零下5℃……这些想法都很好。其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。如今这种方法在记账的时候还使用。所谓“赤字”,就是因此而来的。 现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。 [评析:新知的学习,避免直接讲授,而让学生自己观察、思考、主动寻找方法解决问题,他们掌握的是自己认识、理解的知识,发展活跃了学生的思维。] (2)巩固练习。 同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。 学生完成第117页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
[点评:及时练习,巩固反馈。] 2.自主学习例2。(进一步认识正数和负数) 教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)谁来读一读这段介绍。 [点评:激发学习兴趣,拓展学生的认知。] 今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,教科书第118页上图的左部分,数字前没有符号)从图上你看懂了些什么? 引导学生交流:珠穆朗玛峰比海平面高8844.43米。 我们再来看的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,教科书第118页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢? 引导学生交流:吐鲁番盆地比海平面低155米。 教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗? 学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书) [点评:通过例1的学习,学生应该能想到用此方法,如果学生用其他方法也应肯定。] 教师追问:你是怎么想到用这种方法来记录的呢? 预设一:我是把海平面的高度看作0,比海平面高就可以用+几或几来表示,比海平面低就可以用-几来表示。(教师评价:这位同学会运用刚才学习的知识运用到现在的学习中,学会知识的迁移是一种很好的学习方法,我们应该向他学习) 预设二:如学生答不上,教师做适当引导。 最后教师将课件中数字改动成:海拔+8844.43米或8844.43米;海拔-155米。 教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。 (2)巩固练习:教科书第118页试一试。 教师巡视,集体订正。 3.小组讨论,归纳正数和负数。 教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢? 学生交流、讨论。 预设:①4、+8844.43、3193等这些数归一类;-6、-155、-11034等归一类;0归为一类。②6、3193等归一类;+8844.43归一类;-6、-155、-11034等归一类;0归为一类。③6、+8844.43、3193、0归一类;-6、-155、-11034等归一类。 指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。 提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。 ①如果都同意分三类的,老师可以出难题:我觉得0可以分在6它们一类啊,你们怎么来说服我? ②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。(对于发表意见出色的学生要及时的给予鼓励和表扬) 小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)通常正号可以省略不写。负号可以省略不写吗?为什么? [评析:学生学习例1、例2后对正负数已建立了初步的表象及概念,这时让学生从自己认识的角度给正负数下定义,是充分尊重学生学习自主性的表现,不同学生的定义,会使学生对正负数的认识更全面、更深刻。然后教师再评价和纠正,最后归纳概括,便于学生理解更透彻。]最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)三、运用新知,课堂作业 1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。 2.课堂活动第2题。同桌先讨论,然后反馈。 3.练习二十五第3题。同桌互说,然后全班反馈。 4.作业:练习二十五第1、4题。 5.课外调查:练习二十五第5题。四、小结 通过今天的学习你有什么收获?(学生说,★教师适当启发) 板书: 负数的初步认识 正数:+3(3)+8844.43+15 0: 既不是正数也不是负数 负数:-3-155-10追问太长了20分钟根本写不完
追答你把教师的对话和评论不要、、
热心网友 时间:2023-10-06 04:03
您好,华图教育为您服务。
比较数的大小近似数
一、教学内容:
教材10-11页例5、例6,10-11页做一做,练习三1-4题。
二、素质教育目标
(一)知识教学点
1.使学生学会比较亿以内数大小的方法。
2.使学生学会将整万的数改写成用“万”作单位的数。
3.使学生会用“四舍五入”法把一个亿以内的数万位后面的尾数省略,求出它的近似数。
(二)能力训练点
1.培养学生通过观察、比较的方法,发现问题。
2.培养学生运用迁移、类推方法获取新知的能力。
(三)德育渗透点:使学生逐步养成思考、主动探求的习惯。
四、教学重点:
亿以内数比较大小的方法。
五、教学难点:
求亿以内数的近似数。
六、教具、学具准备:
投影仪。
七、教学步骤
(一)铺垫孕伏
1.口答:
(1)一个五位数,最高位是()位,一个六位数最高位是()位。
(2)998里面有()个万,101010里面有()个十万。
2.在○里面填上“>”“<”或“=”
999○1010601○5687○678
(先让学生填一填,然后指名同学说一说各是怎样比较,引导学生说出万以内数比较大小的方法)
(二)探究新知
1.教学比较数的大小:
(1)导入:我们已经学习了比较万以内数的大小,那么亿以内数的大小如何比较呢?这节课我们就一起来探讨。
教师板书:比较数的大小
(2)教学例5
①出示例5:比较下面每组中两个数的大小
998和101010356000和360000
②比较第一组数998和101010
观察这两个数,并试着比较大小。
想一想:你是根据什么比较的呢?
引导学生说出比较方法,培养学生发散性思维。
第一种:通过读来比较:998是九万九千八百六十四;101010是十万一千零一十,十万多比九万多大,所以998<101010。
第二种:通过位数来比较:101010是六位数,998是五位数,因为六位数的最高位是十万位,而五位数的最高位是万位。所以,六位数比五位数大,998<101010。
教师对学生的回答进行小结,肯定两种方法道理相同,第二种方法比较简便。
③反馈训练:965○10000096780○109650
④总结方法:刚才我们比较的几组数,每组的两个数位数有什么特点?那么这样的两个数如何比较大小呢?
使学生明确:位数不同的数,位数多的那个数就大。
教师板书:位数不同,位数多的就大。
⑤比较第二组数356000和360000
观察这两个数,想一想用刚才的比较方法行不行,为什么?该如何比较呢?同桌同学互相讨论。
启发学生想:比较万以内数的大小,当两个数的位数相同时,要比较左起第一位数,第一位数大的数就大。第一位数相同时,要比较左起第二位数,第二位在的数就大。第二位相同时,再比较第三位数……,现在,这两个数位数相同,左起第一位也相同,就比较左起第二位的数:
然后引导学生比较,第一个数左起第二位是5,第二个数左起第二位是6,所以,第二个数大。356000<360000
⑥总结方法:位数相同的两个数,如何比较大小?
教师板书:位数相同的两个数,先比较左起第一位……
再比较左起第二位……
⑦反馈训练:70080○7010150140○63140
(3)总结比较亿以内数的大小的方法:
比较亿以内数的大小有几种情况?位数不相同的怎么比较?位数相同时,怎么比较?
结合板书,引导学生总结,培养学生的概括能力。
2.教学把整万的数改写成用万作单位的数。
(1)教师板书:50000和1800000
让学生读一读,想一想:这两个数有什么特点?
(这两个数都是整万的数)
(2)教师指出:为了读写方便,我们常常把整万的数改写成用万作单位的数,因为整万的数后面都有4个0,所以改写时,只要从后面去掉4个0,换上一个“万”字就可以了。
教师板书:50000=5万
(3)学生自己把1800000改写成用万作单位的数。并说一说改写方法。
180000=180万
(4)反馈训练:10页做一做。
3.教学求亿以内数的近似数。
(1)出示例6:
①读一读例6各数,想一想:整万的数可以改写成用万作单位的数,读、写都很方便,那么像例6这样不是整万的数,如果在不需要特别精确数据的情况下,也可用什么办法让它读、写方便呢?
(引导学生想:可以省略万位后面的尾数,求出近似数)
②求近似数用什么方法呢?(四舍五入法),下面我们就用这种方法把下面各数千位后面的尾数省略,求出它们的近似数。
49269375
根据哪一位上的数进行四舍五入?学生做完后,请他们说一说。
③能不能用这种方法把例6各数万位后面的数省略,求出它们的近似数呢?
教师板书例6的题目要求。
同学试着做一做,边做边想:省略万位后面的尾数要根据哪一位上的数进行四舍五入?
(引导学生类推出:因为省略十位后面的尾数时,是根据百位上的数进行四舍五入的,所以省略万位后面的尾数时,要根据千位上的数进行四舍五入)
指名学生说出每个数的近似数,并说出自己是怎样求的?
教师板书;84380≈8万726310≈73万
(2)总结求亿以内数的近似数的方法:
讨论:怎样求一个数的近似数呢?
引导学生归纳出:求一个数的近似数,要根据要求确定尾数,然后根据尾数的最高位用四舍五入的方法,求它的近似数。
(3)反馈训练:11页做一做。
(三)巩固发展
1.练习三1题后2小题。
38456○83541020○409300
2.练习三第3题和4题。
3.练习三第2题。
(四)全课小结:通过这节课的学习,你又掌握了哪些知识呢?
(五)布置作业:练习三第5题。
(六)板书设计
比较数的大小
例5:比较下面每组中两个数的大小
998和101010
356000和360000
998<101010
(位数不同时,位数多的数就大)
356000<360000
(位数相同时,先比较左起第一位…再比较左起第二位……)
50000=5万
1800000=180万
近似数:
例6:把下面各数后面的尾数省略求出它们的近似数。
(1)84380 84380≈8万
(2)726310 726310≈73万
(省略万后面的尾数看“千”位)
如有疑问,欢迎向华图教育企业知道提问。
热心网友 时间:2023-10-06 04:04
20分钟本就写不来多么详细或者精彩的教案,面试时也不会查你的教案写的如何,主要是看你在试讲过程中的给人的整体教态,以及给你的面试课程目标你是否有达到,20分钟的教案只是给自己打个草稿,写写这个课你的整个流程是怎么样等