发布网友 发布时间:2022-04-22 07:19
共2个回答
热心网友 时间:2022-06-17 12:44
很多
光热方面:太阳能热水器
光电方面:太阳能发电
热心网友 时间:2022-06-17 12:45
我国太阳能资源状况
在我国,*西部太阳能资源最丰富,最高达2333 KWh/㎡ (日辐射量6.4KWh/㎡ ),居世界第二位,仅次于撒哈拉大沙漠。
根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。
一类地区
为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。这些地区包括宁夏北部、甘肃北部、东部、青海西部和*西部等地。尤以*西部最为丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。
二类地区
为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、*东南部和南部等地。
三类地区
为我国太阳能资源中等类型地区,年太阳辐射总量为5000-5850 MJ/m2,相当于日辐射量3.8~4.5KWh/㎡。主要包括山东、河南、河北东南部、山西南部、北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、苏北、皖北、西南部等地。
四类地区
是我国太阳能资源较差地区,年太阳辐射总量4200~5000 MJ/㎡,相当于日辐射量3.2~3.8KWh/㎡。这些地区包括湖南、湖北、广西、江西、浙江、福建北部、广东北部、陕西南部、江苏北部、安徽南部以及黑龙江、东北部等地。
五类地区
主要包括四川、贵州两省,是我国太阳能资源最少的地区,年太阳辐射总量3350~4200 MJ/㎡,相当于日辐射量只有2.5~3.2KWh/㎡。 太阳能辐射数据可以从县级气象台站取得,也可以从国家气象局取得。从气象局取得的数据是水平面的辐射数据,包括:水平面总辐射,水平面直接辐射和水平面散射辐射。
从全国来看,我国是太阳能资源相当丰富的国家,绝大多数地区年平均日辐射量在4 kWh/㎡以上,*最高达7 kWh/㎡。
四、太阳能的利用现状
1.太阳能光伏发电
世界光伏组件在过去10几年中,平均年增长率约15%。90年代后期,发展更加迅速,最近几年来平均年增长率超过30%。1999年光伏组件生产达到200兆瓦。在产业方面,各国一直通过扩大规模、提高自动化程度、改进技术水平、开拓市场等措施降低成本,并取得了巨大进展。商品化电池效率从10%~13%提高到13%~15%;光伏组件的生产成本降到每瓦3美元以下。在该方面,印度正处于领先地位,有50多家公司从事与光伏发电技术有关的制造业,年生产组件11兆瓦,累计装机容量约有40兆瓦。
在研究开发方面,单晶硅电池效率已达24.7%,多晶硅电池效率也突破了19.8%。碲化镉电池效率达到15.8%,铜铟硒电池效率约为18.8%。晶硅薄膜电池的研究工作自1987年以来发展迅速,成为了世界关注的新热点。
同时,光伏系统和建筑结合将使太阳能光伏发电向替代能源过渡,成为世界能源结构组成的重要部分。
2.太阳能的热应用
就目前来说,人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。
1)太阳能集热器
太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。另外在冬天需要热交换器和膨胀槽以及发电装置以备电厂不能供电之需 。太阳能集热器(solar collector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。按传热工质可分为液体集热器和空气集热器。按采光方式可分为聚光型和聚光型集热器两种。另外还有一种真空集热器:一个好的太阳能集热器应该能用20~30年。自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。
2)太阳能热水系统
早期最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。依循环方式太阳能热水系统可分两种:
○1 自然循环式:
此种型式的储存箱置于收集器上方。水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现象,促使水在除水箱及收集器中自然流动。由与密度差的关系,水流量于收集器的太阳能吸收量成正比。此种型式因不需循环水,维护甚为简单,故已被广泛采用。
○2 强制循环式:
热水系统用水使水在收集器与储水箱之间循环。当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水,使水流动。水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。
3)暖房
利用太阳能作房间冬天暖房之用,在许多寒冷地区已使用多年。因寒带地区冬季气温甚低,室内必须有暖气设备,若欲节省大量化石能源的消耗,设法应用太阳辐射热。大多数太阳能暖房使用热水系统,亦有使用热空气系统。太阳能暖房系统是由太阳能收集器、热储存装置、辅助能源系统,及室内暖房风扇系统所组成,其过程乃太阳辐射热传导,经收集器内的工作流体将热能储存,在供热至房间。至辅助热源则可装置在储热装置内、直接装设在房间内或装设于储存装置及房间之间等不同设计。当然亦可不用储热装置而直接将热能用到暖房的直接式暖房设计,或者将太阳能直接用于热电或光电方式发电,在加热房间,或透过冷暖房的热装置方式供作暖房使用。最常用的暖房系统为太阳能热水装置,其将热水通至储热装置之中(固体、液体或相变化的储热系统),然后利用风扇将室内或室外空气驱动至此储热装置中吸热,在把此热空气传送至室内;或利用另一种液体流至储热装置中吸热,当热流体流至室内,在利用风扇吹送被加热空气至室内,而达到暖房效果。
3.太阳能光电应用
1)太阳能电池
上世纪60年代,科学家们就已经将太阳电池应用于空间技术——通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。如:太阳能庭院灯、太阳能发电用户系统、村寨供电的系统、光伏水泵(饮水或灌溉)、通信电源、石油输*道阴极保护、光缆通信泵站电源、海水淡化系统、城镇中路标、高速公路路标等。欧美等先进国家将光伏发电并入城市用电系统及边远地区自然界村落供电系统纳入发展方向。太阳电池与建筑系统的结合已经形成产业化趋势。太阳能光伏玻璃幕墙组件的应用越来越多,随着上海和北京的几个项目进入实质性运转,这种方式将会代替普通玻璃幕墙,它具有反射光强度小、保温性能好等特点!
太阳电池是对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同。
当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。
“硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维,20世纪末.我们的生活中处处可见“硅”的身影和作用,晶体硅太阳电池是近15年来形成产业化最快。生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。
※太阳能电池分类
Si太阳电池
硅太阳电池是最常用的卫星电源,从1970年起,由于空间技术的发展,各种飞行器对功率的需求越来越大,在加速发展其他类型电池的同时,世界上空间技术比较发达的美、日、欧等国家和地区,都相继开展了高效硅太阳电池的研究。以日本SHARP公司、美国的SUNPOWER公司以及欧空局为代表,在空间太阳电池的研究发展方面领先。其中,以发展背表面场(BSF)、背表面反射器(BSR)、双层减反射膜技术为第一代高效硅太阳电池,这种类型的电池典型效率最高可以做到15%左右,目前在轨的许多卫星应用的是这种类型的电池。
日本的SHARP公司和美国的SUNPOWER公司目前的技术水平却为世界一流,有的技术甚至已经移植到了地面用太阳电池的大批量生产。
上世纪90年代中期,空间电源工程人员发现,虽然这种类型电池的初期效率比较高,但电池的末期效率比初期效率下降25%左右,*了电池的进一步应用,空间电源的成本仍然不能很好地降低。
为了改变这种情况,以SHARP为首的研究机构提出了双边结电池结构,这种电池的出现有效地提高了电池的末期效率,并在HES、HES-1卫星上获得了实际应用。
另外研究人员还发现,卫星对电池阵位置的要求比较苛刻,如果太阳电池阵不对日定向或对日定向差等都会影响到卫星电源的功率,这在一定程度上也*了卫星整体系统的配置。比如空间站这样复杂的飞行器,有的电池几乎不能完全保证其充足的太阳角,因而就需要高效电池来满足要求。虽然目前已经部分应用了常规的高效电池,但电池的高的α吸收系数、有限的空间和重量的需要使其仍然不能满足空间系统大规模功率的需要。传统的电池结构仍然受到很大程度的*。在这种情况下,俄罗斯在研究高效硅电池初期就侧重于提高电池的末期效率为主,在结合电池研究方面提出了双面电池的构想并获得了成功,真正做到了高效长寿命和低成本。
GaAs太阳电池
随着空间科学和技术的发展,对空间电源提出了更高的要求。80年代初期,前苏联、美国、英国、意大利等国开始研究GaAs基系太阳电池。80年代中期,GaAs太阳电池已经用于空间系统,如1986年前苏联发射的“和平号”空间站,装备了10KW的GaAs太阳电池,单位面积比功率达到180W/㎡。8年后,电池阵输出功率总衰退不大于15%。
GaAs基系太阳电池经历了从LPE到MOVPE,从同质外延到异质外延,从单结到多结叠层结构发展变化,其效率不断提高。从最初的16%增加到25%,工业生产规模年产达100KW以上,并在空间系统得到广泛的应用。更高的效率减小了阵列的大小和重量,增加了火箭的装载量,减少火箭燃料消耗,因此整个卫星电源系统的费用更低。
薄膜太阳电池
为适应空间应用需求,国际上纷纷制订各自的薄膜太阳电池计划(如NASA,主要目标在于提高比功率和降低发射装载容量),提出解决措施:
(1)研制超轻柔性衬底薄膜太阳电池;
(2)研制多结薄膜太阳电池。目前,国际发展趋势主要涉及非晶硅太阳电池、铜铟(镓)硒(CuInGaSe2)太阳电池和碲化镉(CdTe)太阳电池。经过数年的努力,其效率达到15~20%(AM0)。
另一方面,为展开柔性薄膜太阳电池的研制(展开式、折叠式、套桶式、卷廉式)的设计与应用提供可能。自90年代后期,国外已开展了以聚合物为衬底薄膜太阳电池的研制,并取得一定的进展。薄膜太阳电池是获得高效率、长寿命、高可靠、低成本的重要途径之一。主要包括:a-Si及其合金、CuInSe2 及其合金、以及CdTe三种材料的薄膜太阳电池。
聚光太阳电池
一般认为,现代聚光PV开始于上世纪70年代末悉尼国家实验室,采用了点聚焦菲涅尔透镜硅电池双轴跟踪结构,随后并研制了几个原型。在上世纪80年代,很多研究机构进行了一系列成功的实验,在聚光技术方面取得了突破性进展,如菲涅尔透镜、棱形玻璃盖片等。到上世纪90年代中期,线聚焦Fresenel透镜聚光阵技术已经成功地用于SCARLET太阳电池阵,电池为GaInP/GaAs/Ge三结电池,聚光阵的功率密度大于200 W/㎡,比功率大于45 W/kg。线聚焦Fresenel透镜聚光阵已经用于DEEPSPACE-1。
由于三结GaAs太阳电池有很好的高温特性(为高电压低电流器件),通过聚光将显著提高电池电流输出,特别在实现高倍聚光后,可获得更高的功率输出。因此,以三结砷化镓太阳电池为主要部件的聚光太阳电池以其高效率(可达到40%以上)、高温性能好(工作温度每升高1度性能仅下降0.2%,可在200?C情况下正常工作,聚光倍数可达500倍以上)等特点被国际公认为最有发展前途和最具商用价值的新一代太阳能器件。
太阳能硒光电池
日本制成了世界上第一架太阳能照相机,重量仅有475克,机内装有先进的太阳能电池系统,其蓄电池可连续使用4年。美国一家公司生产了一种新型的135太阳能照相机,它的光圈、速度均由微电脑自动控制,电力则由太阳能硒光电池提供,只要有光线就能供电使用。
太阳能卷曲充电器
SolarRolls,即使在山上也能随意的给你的数码充电。这个充电器最独特的地方就是它采用卷轴式的设计,全部展开就像一块布,还能卷起来放在一个管子里,经久耐用又防水。根据使用环境的不同,SolarRolls一共有三种型号:SolarRoll 14,展开后长57英寸,宽12英寸,价格为479美元。SolarRoll 9,展开后有40英寸,价格为349美元。SolarRoll 4.5展开只有22英寸长,我们只用这个4.5的就足够给自己的手机或者数码相机充电。
※空间太阳电池主要性能
第一个空间太阳电池载于1958年发射的Vangtuard I,体装式结构,单晶Si衬底,效率约10%(28℃)。1970年后,人们改善了电池结构,采用BSF、光刻技术及更好减反射膜等技术,使电池的效率增加到14%。在70年代和80年代,地面太阳电池大约每5.5年全球产量翻番;而空间太阳电池在空间环境下的性能,如抗辐射性能等得到了较大改善。由于80年代太阳电池的理论得到迅速发展,极大地促进了地面和空间太阳电池性能的改善。到了90年代,薄膜电池和Ⅲ-Ⅴ电池的研究发展很快,而且聚光阵结构也变得更经济,空间太阳电池市场竞争十分激烈。在继续研究更高性能的太阳电池,主要有两种途径:研究聚光电池和多带隙电池。
电池效率
空间太阳电池通常具有较高的效率,以便在空间发射的重量、体积受*的条件下,能获得特定的功率输出。特别在一些特定的发射任务中,如微小卫星(重量在50~100公斤)上应用,要求单位面积或单位重量的比功率更高。
抗辐照性能
空间太阳电池在地球大气层外工作,必然会受到高能带电粒子的辐照,引起电池性能的衰减,主要原因是由于电子或质子辐射使少数载流子的扩散长度减小。其光电参数衰减的程度取决于太阳电池的材料和结构。还有反向偏压、低温和热效应等因素也是电池性能衰减的重要原因,尤其对叠层太阳电池,由于热胀系数显著不同,电池性能衰减可能更严重。
可靠性
光伏电源的可靠性对整个发射任务的成功起关键作用,与地面应用相比,太阳电池/阵的费用高低并不重要,因为空间电源系统的平衡费用更高,可靠性是最重要的。空间太阳电池阵必须经过一系列机械、热学、电学等苛刻的可靠性检验。
2)太阳能路灯
太阳能路灯是一种利用太阳能作为能源的路灯,因其具有不受供电影响,不用开沟埋线,不消耗常规电能,只要阳光充足就可以就地安装等特点,因此受到人们的广泛关注,又因其不污染环境,而被称为绿色环保产品。太阳能路灯即可用于城镇公园、道路、草坪的照明,又可用于人口分布密度较小,交通不便经济不发达、缺乏常规燃料,难以用常规能源发电,但太阳能资源丰富的地区,以解决这些地区人们的家用照明问题。目前,一种风能与太阳能相结合的新型路灯在天津市南开区梅苑路试运行。白天路灯上安装的风能和太阳能收集装置将风能和太阳能转化成电能,储存到蓄电池里,夜间蓄电池给路灯供电。
五、太阳能利用的优缺点
优点:�
(1)普遍:太阳光普照大地,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。�
(2)无害:开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。�
(3)巨大:每年到达地球表面上的太阳辐射能约相当于130万亿t标煤,其总量属现今世界上可以开发的最大能源。�
(4)长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。�
缺点:�
(1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。�
(2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的*以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。�
(3)效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。