发布网友 发布时间:2022-03-16 19:08
共3个回答
热心网友 时间:2022-03-16 20:38
D(X)=E(X^2)-[E(X)^2]
^期望可以由分布列来求,方差是有个公式:
D(X)=E[X-E(X)]^2
=E{X^2-2XE(X)+[E(X)]^2}
=E(X^2)-2[E(X)]^2+[E(X)]^2
=E(X^2)-[E(X)]^2
扩展资料:
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:
D(X)=(x-μ)^2 f(x) dx
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
参考资料来源:百度百科-方差
热心网友 时间:2022-03-16 21:56
D(X)=E{[X-E(X)]²}
=E{X²-2XE(X)+E²(X)}
因为E[-2XE(X)]=-2E²(X)
所以上式可写成
D(X)=E{X²-2XE(X)+E²(X)}
=E[X²-2E²(X)+E²(X)]
=E[X²-E²(X)]
=E(X²)-E²(X)
扩展资料
E(x²)这个积分要化为二重积分才能做
∫∫e^x²e^y²dxdy
=∫∫e^(x²+y²)dxdy
再运用极坐标变换
r^2=x^2+y^2
dxdy=rdrdθ
∫∫e^(x²+y²)dxdy
=∫∫e^r^2*rdrdθ (注意到θ∈[0,2π])
=1/2e^r^2*2π
=πe^r^2+C
所以
∫e^x²dx=√(πe^r^2+C)
由于没有限定上下限,所以是没有办法求出来具体的C值及积分的值.
热心网友 时间:2022-03-16 23:30
D(aX+bY)
=a^2 D(X)+b^2 D(Y)+2abCov(X,Y)