发布网友 发布时间:2022-04-24 05:55
共1个回答
热心网友 时间:2023-10-05 03:30
ASI(Actuator-Sensor Interface)是用于在控制器(主站)和传感器/执行器(从站)之间进行双向、多站点数字通信的总线网络,它由主站、从站、传输系统3部分组成,而传输系统又由两芯传输电缆、ASI电源和数据解耦电路构成。 ASI总线推荐使用的电缆型号为CENELEC或DIN VDE 0281[CENE-90],并且要标明HO5VV-F2x1.5,这是一种两芯、横截面积为1.5mm2的柔性电源线,它既便宜又随处可见。另一种是具有相同电特性的ASI专用扁平电缆,它在安装上非常方便。因为ASI电缆既要传输信号又是要提供电源,所以在选择电缆时必须注意两个方面的技术指标:第一是通信频谱特性,第二是直流阻抗特性。在认为有较大干扰的情况下,则需要选择使用屏蔽电缆,如型号为(N)YMHCY-02x1.5的电缆,但它也必须满足规定的频谱特性要求。特别要注意的是屏蔽层在ASI电源端只能接地,而不能接在ASI+和ASI-端。
ASI电源的电压为29.51-31.5VDC,每个从站向传感器/执行器提供的电源电压VDC(+10[%]或-15[%])。在一个ASI总线系统中,ASI电源可给31个从站提供的最大电流为2A,因此每个从站平均消耗的电流为65mA。如果从站带动的执行器功率较大,所需电流大于65mA时,则必须外接辅助电源。整个系统允许在ASI电缆上的最大压降为3V,因此电缆的横截面积不能小于1.5mm2,这样才能保证网络中每个从站都能得到规定的电压值。
ASI电缆的等效电路模型,分为两芯电缆和带屏蔽层两芯电缆两种模型。电阻(R’)、电容(C’)、电感(L’)和电导(G’)值为ASI电缆的等效参数。传输速率为167Kb/s时,两芯电缆总的极限参数范围为:R’=20-50mΩ/m,L’=200-600nH/m,C’=35-70pF/m,G’=1-3μS/m。在同样的传输速率下,带屏蔽层的两芯电缆的极限参数为:R’s=10mΩ/m,Ls’=800nH/m,Cs’=300pF/m,Gs’=15μS/m。
ASI电缆的复数阻抗与传输速率之间的关系对系统的响应特性具有十分重要的意义。在传输速率为167Kb/s时,阻抗为80-120Ω,而低于或高于167Kb/s时,阻抗会迅速下降,因此当采用167Kb/s的传输速率时,将得到最大的信号幅值。 ASI信号在传输前要进行调制,采用什么调制方法要考虑诸多的因素。例如附加在电源电压上的传输信号必须是交变的;主站和从站之间的双向通信要求双主都能够产生简单、有效和节省时间的窄带传输信号;使用非屏蔽电缆时不应有太多的干扰等等。ASI信号的调制采用交变脉冲调制方式(APM),这是一种在基频进行调制的串行通信方式。
主站发出的请求信号位序列首先转换为能执行相位变换的位序列,即曼彻斯特II编码,这样就产生了相应的传输电流。当传输电流通过电感元件时会产生电压突变,就产生了请求信号电压。每一个增加的电流产生一个负电压脉冲,而每一个减小的电流产生一个正电压脉冲,通过这种方法从站很容易得到请求信号。因为信号是叠加在电源上的,所以信号电压有时会大于从站的电源电压。在从站内并不需要电感元件,这就使得智能型传感器/执行器上的带有Slave Chip元件的一体化从站电路更小、更简单、更经济。在从站中接收电缆上的请求信号电压并转化为初始的位序列,就完成了一次主站向从站的请求信号的转换过程。
信号传输的电压脉冲被设计成正弦平方波方式,但要考虑到低频干扰的影响,通过选择合适的传输波形可以提高可靠性。经过这种调制后的信号在规定的拓扑结构中,每两位脉冲信号的间隔只有6μs。 ASI总线系统为主从结构,采用请求-应答的访问方式。主站先发出一个请求信号,信号中包括从站的地址。接到请求的从站会在规定的时间内给予应答,在任何时间只有1个主站和最多31个从站进行通信。一般访问方式有两种:一种是带有令牌传递的多主机访问方式;另一种是CSMA/CD方式,它带有优先级选择和帧传输过程。而ASI的访问方式比较简单,为了降低从站的费用、提高灵活性,一方面在不增加传输周期的条件下尽量包括更多的参数和信息,另一方面传输周期的时间应能自动调整,例如系统中只有6个从站时,传输周期为1ms,而有31个从站时周期约为5ms。如果在网上有短暂的干扰时,主站没有收到从站的应答信号或收到的是错误无效的信号时,主站可以重发信息而无需重复整个传输周期。
ASI总线的总传输速率为167Kb/s,它包括所有功能上必要的暂停。允许的网络传输速率为53.3Kb/s,从这一点看它的传输效率为32[%],与其它现场总线系统相比,这个数值较好。但在电磁干扰的环境下应采取进一步措施,以保证数据传输的可靠性。
一个ASI报文由主站请求、主站暂停、从站应答和从站暂停4个环节组成。所有的主站请求都是14位,从站应答为7位,每一位的时间长度为6μs。主站暂停最少为3位,最多为10位。如果从站是同步的话,在主站3位暂停后从站就可以发送应答信号。如果不是同步信号,那么从站就必须在5位暂停后发送应答信号,因为在这段时间内从站会在接收到完整有效的请求信号后监测主站的暂停情况,看看是否还会有其它信息。但是如果主站在10个暂停位后没有接收到从站的应答信号的起始位,主站会认为不再有应答信号而发出下一个地址的请求信号。从站的暂停只有1位或2位的时间。
在ASI报文中主站请求由以下具体信息组成:
ST 起始位 主站请求开始,0为有效,1为无效。
SR 控制位 数据/参数/地址位或命令位,0为数据/参数/地址位,1为命令位。
A0~A4 从站地址位 被访问的从站地址(5位)。
I0~I4 信息位 要传输的信息(5位),请求类型。
PB 奇偶校验位 在主站请求信息中不包括结束位为1的各位总和必须是偶数。
EB 结束位 请求结束,0为无效,1为有效。
在ASI报文中从站应答由以下具体信息组成:
ST 起始位 从站应答开始,0为有效,1为无效。
I0~I3 信息位 要传输的信息(4位),应答类型。
PB 奇偶校验位 在从站应答信息中不包括结束位为1的各位总和必须是偶数。
EB 结束位 应答结束,0为无效,1为有效。 在ASI主从结构中,主站所发出的报文在系统数据交换中占有重要的地位。主站的请求报文共有9种:(1)数据交换 要求从站把测量数据上传给主站,而主站又可以把控制指令下达给从站。(2)写参数 设置从站功能,如传感器的测量范围、激活定时器、在多传感器系统中改变测量方法等。(3)地址分配 只有当从站地址为00H时才有效。从站接到这个请求后,用06H回答,表示已收到了主站的正确请求,从站从此就可以在这个新地址被呼叫了,同时把这个新地址存储在从站的EEPROM中,这个过程大约需要15ms。这种方式使主站可以对运行中损坏后重新置换的从站自动进行原有地址的设置。(4)复位 把被呼叫的从站地址恢复到初始状态,从站用06H回答,整个过程需2ms。(5)删除操作地址 暂时把被呼叫的从站地址改为00H,这个报文一般和“地址分配”报文一起使用。当新地址确定后,从站用06H回答。如果使用指令“Reset-ASI-Slave”就可以恢复原地址。(6)读I/O配置。(7)读ID编码 从站的I/O设置和ID编码在出厂时已经确定,不能改变。(6)、(7)结合使用的目的是确定从站的身份。(8)状态读取 读取从站状态缓冲器中的4个数据位,以获得在寻址和复位过程中出现的错误信息。(9)读出状态和状态删除 读出从站状态缓冲器的内容,然后删除。
在以上9种主站请求报文中,数据和参数的传输有两种,设置和改变从站地址的有两种,对从站进行识别和查询的有5种。表1列出的是主站9种报文的名称和内容。 如果在非屏蔽电缆上进行高速ASI传输通信,那么电磁兼容性(EMC)问题就非常重要了。发射干扰和现场的场强辐射干扰都不应超过欧洲标准EN55011给出极限值,ASI系统的抗干扰能力在IEC801文件中已有详细的说明。大量的ASI系统测试数据表明,由于传输信号采用了正弦平方波,因此ASI系统的发射干扰保持在IEC的规定值以下。ASI系统对于静态放电在26M-1GHz频率范围内的电磁高速瞬间干扰的抵抗能力可达到3级。在最坏的情况下,通信将出现故障,但系统具有检测功能并可以对报文进行重发。因为是短信息,重发不会增加周期时间,只有在报文发生严重错误时,才会增加报文的周期长度。当位传输错误率在70b/s时,系统周期大约为5ms;如果错误率再高一点,周期时间变化不大,ASI仍能保持它所有的功能。只有误差超过5000b/s时,正常的数据传输才难以维持。
当ASI电缆被切断时(如错误短接或故障断开),主站将不能访问位于断点另一侧的从站,而位于主站一侧的从站仍可以被主站呼叫。通过管理服务程序主站能够诊断和发出故障信号,但前提是数据解耦电路和电源这时应在同一侧,否则系统就会完全瘫痪。如果在ASI系统中没有使用中继器,那么当电源发生故障时,ASI系统将停止工作,有关故障的信息也不会得到。但如果使用了中继器,因中继器可以向网络供电,那么电源故障的影响就会减小,系统将维持部分功能。
ASI总线的传输系统是连接网络系统中主站、从站、电源、控制器、传感器/执行器的通路和桥梁。报文信号在传输系统中要经过多次的变换和恢复,并要抵抗各种外界的干扰以保证准确、快捷、可靠的信息交换,它是ASI总线系统中重要的组成部分。