已知非负等差数列{an}的公差d不为0,前n项和为Sn,设m,n,p∈N*,且m+n...

发布网友 发布时间:2024-10-23 23:20

我来回答

1个回答

热心网友 时间:2024-11-06 13:05

由题意得a1>=0 a2>0 ...an>0 d>0
sn=na1+(n-1)d sm=ma1+(m-1)d sp=pa1+(p-1)d
由1/sn+1/sm>=2/sp得

sp(sn+sm) >=2sn*sm
spsn-snsm+spsm-snsm>=0
sn(sp-sm)+sm(sp-sn)>=0
sn(pa1+(p-1)d -ma1-(m-1)d)+sm(pa1+(p-1)d -na1-(n-1)d)>=0
sn((p-m)a1+(p-m)d) +sm((p-n)a1+(p-n)d)>=0
sn(p-m)(a1+d) +sm(p-n)(a1+d)>=0
sn(p-m)+sm(p-n)>=0 (a1+d>0)
p-m=(m+n)/2-m =(n-m)/2 p-n=(m+n)/2 -n =(m-n)/2
sn*(n-m)/2 +sm(m-n)/2>=0
(n-m) (sn-sm)>=0
若n>=m 则sn>=sm
所以上式成立
若n<=m 则sn<=sm
所以上式一样成立
综上所述得1/sn+1/sm>=2/sp

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com