传统PWM控制与移相PWM控制电路在硬件电路上有什么区别?

发布网友 发布时间:2022-04-21 15:32

我来回答

3个回答

热心网友 时间:2023-11-14 20:01

  硬件上的最主要区别在于PWM发生电路不同。

  考虑如下全桥电路:

  此电路中,左半桥臂与右半桥臂用于驱动变压器原边绕组或是直流电机时,传统控制方法类似先开左半桥臂上管与右半桥臂下管,然后关断左半桥臂上管和右半桥臂下管,经过若干死区时间后开启左半桥臂下管和右半桥臂上管。在传统PWM工作过程中,这两个开关的开启和关闭时同时的。

  而移相全桥相当于,想要开通左半桥臂的上管和右半桥臂的下管,要先开通左半桥臂的上管,经过一段时间后在开通右半桥臂的下管,关闭时也是先关左半桥臂的上管与右半桥臂的下管(也称左半桥臂为超前桥臂,右半桥臂为滞后桥臂),另两个开关管也是左先开,先关。

  好处就是与传统PWM控制方法相比,移相PWM能够形成软开关条件,节约开通关断损耗。

  细节请参考“移相全桥软开关”。

  由于超前和滞后的存在,所以与传统PWM控制相比,硬件上要求栅极驱动能够满足此超前滞后要求(比如上下两个桥臂的驱动是没有互锁保护的(有互锁保护也可以,但是输入波形要满足时序),或是带使能端的),还有PWM的产生电路也要能够产生相应波形(比如单片机、DSP等可编程的方案可以产生,但是一些PWM发生芯片就不可以)。

热心网友 时间:2023-11-14 20:02

  PWM控制电路 CPLD VHDL 在直流伺服控制系统中,通过专用集成芯片或中小规模的数字集成电路构成的传统PWM控制电路往往存在电路设计复杂,体积大,抗干扰能力差以及设计困难、设计周期长等缺点?因此PWM控制电路的模块化、集成化已成为发展趋势。它不仅可以使系统体积减小、重量减轻且功耗降低,同时可使系统的可靠性大大提高。随着电子技术的发展,特别是专用集成电路(ASIC)设计技术的日趋完善,数字化的电子自动化设计(EDA)工具给电子设计带来了巨大变革,尤其是硬件描述语言的出现,解决了传统电路原理图设计系统工程的诸多不便。针对以上情况,本文给出一种基于复杂可编程逻辑器件(CPLD)的PWM控制电路设计和它的仿真波形。
  1 PWM控制电路基本原理 为了实现直流伺服系统的H型单极模式同频PWM可逆控制,一般需要产生四路驱动信号来实现电机的正反转切换控制。当PWM控制电路工作时,其中H桥一侧的两路驱动信号的占空比相同但相位相反,同时随控制信号改变并具有互锁功能;而另一侧上臂为低电平,下臂为高电平。另外,为防止桥路同侧对管的导通,还应当配有延时电路。设计的整体模块见图1所示。其中,d[7:0]矢量用于为微机提供调节占空比的控制信号,cs为微机提供控制电机正反转的控制信号,clk为本地晶振频率,qout[3:0]矢量为四路信号输出。其内部原理图如图2所示。该设计可得到脉冲周期固定(用软件设置分频器I9可改变PWM开关频率,但一旦设置完毕,则其脉冲周期将固定)、占空比决定于控制信号、分辨力为1/256的PWM信号。I8模块为脉宽锁存器,可实现对来自微机的控制信号d[7:0]的锁存,d[7:0]的向量值用于决定PWM信号的占空比。clk本地晶振在经I9分频模块分频后可为PWM控制电路中I12计数器模块和I11延时模块提供内部时钟。I12计数器在每个脉冲的上升沿到来时加1,当计数器的数值为00H或由0FFH溢出时,它将跳到00H时,cao输出高电平至I7触发器模块的置位端,I7模块输出一直保持高电平。当I8锁存器的值与I12计数器中的计数值相同时,信号将通过I13比较器模块比较并输出高电平至I7模块的复位端,以使I7模块输出低电平。当计数器再次溢出时,又重复上述过程。I7为RS触发器,经过它可得到两路相位相反的脉宽调制波,并可实现互锁。I11为延时模块,可防止桥路同侧对管的导通,I10模块为脉冲分配电路,用于输出四路满足设计要求的信号。CS为I10模块的控制信号,用于控制电机的正反转。
  2 电路设计 本设计采用的是Lattice半导体公司推出的is-plever开发平台,该开发平台定位于复杂设计的简单工具。它采用简明的设计流程并完整地集成了Leonardo Spectrum的VHDL综合工具和ispVMTM系统,因此,无须第三方设计工具便可完成整个设计流程。在原理设计方面,本设计采用自顶向下、层次化、模块化的设计思想,这种设计思想的优点是符合人们先抽象后具体,先整体后局部的思维习惯。其设计出的模块修改方便,不影响其它模块,且可重复使用,利用率高。本文仅就原理图中的I12计数器模块和I11延迟模块进行讨论。计数器模块的VHDL程序设计如下:entity counter isport(clk: in std logic; Q : out std logic vector(7 downto 0); cao: out std_logic); end counter; architecture a_counter of counter issignal Qs: std_logic_vector(7 downto 0); signal reset: std_logic; signal caolock: std_logic; beginprocess(clk,reset) beginif(reset=‘1’)thenQs<=“00000000”; elsif clk’event and clk=‘1’ thenQs<=Qs+‘1’; end if; end process; reset<=‘1’ when Qs=255 else ‘0’; caolock<=‘1’ when Qs=0 else ‘0’; Q<=Qs; cao<=reset or caolock; end a_counter;
  在原理图中,延迟模块必不可少,其功能是对PWM波形的上升沿进行延时,而不影响下降沿,从而确保桥路同侧不会发生短路。其模块的VHDL程序如下:entity delay isport(clk: in std_logic; input: in std_logic_vector(1 downto 0); output:out std_logic_vector(1 downto 0) end delay; architecture a_delay of delay issignal Q1,Q2,Q3,Q4: std_logic; beginprocess(clk) beginif clk’event and clk=‘1’ thenQ3<=Q2; Q2<=Q1; Q1<=input(1); end if; end process; Q4<=not Q3; output(1)<=input(1)and Q3; output(0)<=input(0)and Q4; end a_delay;

热心网友 时间:2023-11-14 20:02

简单的说,传统PWM控制比较简单,在开关转换关断时间区,瞬间同时存在大电压与大关断电流,造成了较大的热损耗及对器件很大的冲击,不但转换效率差,而且散热要求高,器件容易损坏。

而移相控制充分考虑到关断时间高电压的冲击,对开关进行提前或延后,达到零电流或零电压开关状态切换,损耗小,效率高,散热要求低,器件可以更集成化小型化。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com